
Google Cloud Setup for Pytorch with GPU

September 10, 2019

Author: Thamme Gowda tg@isi.edu

1 Create a Virtual Machine using a Prebuilt Image for Pytorch

Goto this page
https://console.cloud.google.com/marketplace/config/click-to-deploy-images/tensorflow
Configure the virtual machine settings as follows:

1. Deployment Name: nlp-class
2. vCPUs 13GB Memory (Default)
3. Num GPUs 1 ; GPU Type Tesla K80
4. Framework Pytorch 1.2 + fast.ai Cuda 10.0
5. Check "GPU install NVIDIA GPU driver auto on first statup"
6. Check"Access to the Jupyter Lab Enable access to JupyterLab via URL instead of SSH. (Beta)"
7. Create

When it is done, Click onn "SSH" option to get a ssh shell

1. nvidia-smi shows GPU
2. python -c 'import torch; print(torch.cuda.is_available())' prints True when ev-

erything setup correctly
3. curl ifconfig.me prints external IP address of VM. Notedown this for step 4.
4. jupyter lab --ip=0.0.0.0 --port=8888 starts jupyter lab on port 8888. --ip=0.0.0.0 is

to make it accessible from other machines (such as your laptop). It also prints a token on for
authentication, notedown for step 4.

5. On your web browser goto http://<IP-from-setp3>:8888 . It should give you a box for past-
ing token. Paste the token noted from step 4. You should have access to Jupyter Notebook
with these.

2 Creating a VM manually and configuring it.

I didnt know there was a prebuilt image. I created this tutorial before finding the
prebuilt image. Sharing this incase someone needs it for customising the runtime

1

https://isi.edu/~tg/

2.1 Overview

• Google Compute Cloud -- for the hardware (CPU/RAM/GPU/Stoarge)
• Conda -- Installing requitements and managing environments
• Cuda and Nvidia libs for GPU acceleration
• Jupyter lab/notebook -- Interactive python shell with documentation/notes
• and ofcourse, PyTorch -- the main focus

3 Google Compute Cloud

One of the places where you can rent some compute+storage hardware.
_Disclaimer: Am I selling Google services to you? No! We will need GPUs for deep learning,

and they have them, and they were kind enough to give free credits. __

3.1 Entities:

• Project

– Instance (CPU + RAM + GPU)

* Operating System -- Recommended: some variant of linux with GNU tools, eg:
Ubuntu . or Centos

* Persistent Disk: where you store data
* Network Interfaces: protect or expose node

• Billing

Note: In this era of cloud services, emphasize on data and code of your research/homework.
Why? You can almost always trade other components(CPU/GPU etc) with money. But data+code
(both of them reside on a persistant disk) is more valuable than what money+time can buy.

3.1.1 Google Compute Console

3.2 Create Project

• Go to https://console.cloud.google.com/cloud-resource-manager
• Click "Create Project" on the top left
• Give a name -- for example "nlpclass" -- click "create"

Now onwards, remember to have your project selected from the drop down next to "Google
Cloud Platform" on the top left (on the bar).

Note: If GCC ever asks to enable Google Compute Engine API, please enable it.

3.3 Estimate before you rent

Cost Estimator https://cloud.google.com/products/calculator/
Note: 1. the GPU+CPU costs only when you keep the machine running. But storage costs

irrespecitve of whether you use it or not.
2. We are NOT trying to get top end GPU or CPU or storage for since they are often very expensive
and we dont need them for class homework

Here is an estimate:

2

3

1. GPU; Nvidia Tesla K80s (the low end, cheapest GPU)

• GPUs are costrained: not available on all Regions/Zones and not compatible with all CPU
setups. If you are going to use GPU, try to get this constraint sorted out first.

2. CPU either 2 core or 4core CPU, with 16GB RAM
3. 200GB standard persistant stoarge (Not the SSD; dont think we need SSD)

With GPU
Suggestions for reducing cost: 1. GPU is the most expensive resource as of now 2. Develop-

ment takes time, You dont need GPU for development; You can do it on CPU + Try to do this on
your laptop if possible! or Google Colab 3. Once you have working code to run, rent a GPU and
run it on GPU. GPU is faster 4. Keep the storage peristant -- remember that the code+data you
have is more valuable asset than the rest. + Take backup of code. Suggestion: not the googledrive
or dropbox, but git/github for the code

3.4 Create a Virtual Machine instance

Got to https://console.cloud.google.com/compute/instances
Find an option to "Create".
Here is an example

3.4.1 OS and disk.

1. For the sake of simplicity, we are going to use one disk for Boot and Data, hence increased
boot disk size from 10GB to 200GB. In practice you would want to seperate Boot disk and
Data disk. However, for a beginner, that setup creates more complications and confusions (If
this doesnt make sense, dont worry, its fine. If you know what you are doing go and make
two disks).

2. In this setup, remember to Uncheck "Delete Boot Disk when instance is deleted".

3. Why CentOS 7 instead of ___ ? USC HPC runs it, so better be familiar wit it.

Thats it, create! This is going to take some time.

You might get error message: Quota ’GPUS_ALL_REGIONS’ exceeded. Limit: 0.0
globally.
Here is how to fix it https://stackoverflow.com/a/53678838/1506477 . By default
GPU quota is set to 0, we need to set it to 1. (I think 0 means disabled, 1 means 100%)
Find the Retry button to resend the VM creation request

If GPUs are constrained resource, they may not be available when you try, you might get an
error. What can we do then? Two options: 1. Go back and create the similar machine without
GPU; Maybe consider adding more CPU cores like 4 instead of 2 2. IF GPU is needed, try again at
some other time, or switch datacenter zone

4

5

6

3.5 Login to the virtual machine

Now that you got some machine rented on Google Cloud, time to go inside and do stuff. Here
https://console.cloud.google.com/compute/instances you will see cerated instance. A Green
Tick indicates it is running.

Clicking on the SSH should give you instance ssh in browser. If you are happy with it, you
can work directly from browser. But most of us prefer our own terminal emulator clients such as
iterm (OSX), Terminator (linux) or PuTTY (windows). We can do that too, I leave that to your
own exploration.

df -h should show disk space

3.6 Practice Starting Stoping Instance

https://console.cloud.google.com/compute/instances

3.7 External IP

https://console.cloud.google.com/compute/instances
When instance is running, you will see External IP. This is where you can get External IP. You can
also assign static IP (which is beyond the scope of this tutorial) Alternatively, when you are logged
inside the VM, curl ifconfig.me to see its external IP.

3.8 Updating Resources of Virtual Machine (After Creation)

Stop the machine : Goto https://console.cloud.google.com/compute/instances > Select > Stop
(or shutdown)

Once stopped, click on the instance name > (a new page shows) > Edit (here you are free to
edit the resources).

If you want to remove GPU, this is the place. Just click close mark "X" next to GPU and save

3.8.1 Allow Network Ports

We are going to use Jupyter lab which is a web service that uses port 8888. By de-
fault google cloud blocks all ports. Let us open port . This page has relevant details:
https://docs.bitnami.com/google/faq/administration/use-firewall/

Allow tcp port 8888 from anywhere.
VM instance details > Network interfaces "View Details" > "Firewall Rules" (on the left side,

3rd option) > "Create Firewall Rule" 1. Enter Name "allow8888", similary description 2. Direction
"Ingress" Action to match "Allow" 3. Target: "All instances in network" 4. Source Filter "IP Ranges"
Source IP ranges "0.0.0.0/0" 5. Specified protocols and ports: Check "tcp" adn enter "8888" 6.
"Create"

4 Software Installation

mkdir work && cd work - create a work directory, this is the directory you need to backup when
times comes to close the lease

Install wget and tmux : sudo yum install wget tmux htop

7

Recommended (not mandatory) tmux is a very useful tool when working with remote machines.
We wont teach it, but highly recommended for increasing the productivuity (i.e do more quicker).

tmux # creates a new tmux ession
tmux ls # lists all available sessions
tmux a -t <target_number> # attach to the desired target tmux
to detach: when in tmux session type 'CTRL+b d'
tmux by default uses prefix CTRL+b

Install your favorite editor, I am going to do sudo yum install emacs-nox

4.1 Install Conda

Conda is a popular environment manager, package installer that works across platforms:
linux/Mac/Windows. Conda comes in two flavors: miniconda and anaconda. We want mini-
conda and NOT anaconda. Get the URL of latest miniconda for linux 64-bit && python 3.7 from
https://docs.conda.io/en/latest/miniconda.html

cd ~/work
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

Read the instructions from installer; review the license, and ’yes’ to approve. leave the default
settings (unless you know what you are doing)

When the installer finishes, it would ask: >installation finished. Do you wish the installer to
initialize Miniconda3 by running conda init? [yes|no]

You should say ’yes’
conda edited environment settings, particularly bashrc. You need to reload bashrc.

Ideally quit the current bash session and get a new bash session with new environment. For now
just type bash command, it will do the same.

Test conda

conda info
conda env list
$ python
Python 3.7.3 (default, Mar 27 2019, 22:11:17)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.

We are almost there!
Pro mode: create a separate conda environment for project. For the beginner, conda already

created a default environment called base, and we are going to use the same for this project.

4.2 Setup GPU drivers

Caution: Getting nvidia drivers work well is a rabbit hole.
Google has given a script: https://cloud.google.com/compute/docs/gpus/add-gpus#install-

driver-script
Copy paste this script (which I copied from that link) to a script file, say install-cuda.sh

8

#!/bin/bash
Install kernel headers and development packages
echo "Installing kernel headers and development packages."
yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y
echo "Checking for CUDA and installing."
Check for CUDA and try to install.
if ! rpm -q cuda-10-0; then

curl -O http://developer.download.nvidia.com/compute/cuda/repos/rhel6/x86_64/cuda-repo-rhel6-10.0.130-1.x86_64.rpm
rpm -i --force ./cuda-repo-rhel6-10.0.130-1.x86_64.rpm
yum clean all
Install Extra Packages for Enterprise Linux (EPEL) for dependencies
yum install epel-release -y
yum update -y
yum install cuda-10-0 -y

fi
Verify that CUDA installed; retry if not.
if ! rpm -q cuda-10-0; then

yum install cuda-10-0 -y
fi

Then run sudo bash install-cuda.sh This is going to take lot of time. Once finished, run

$ nvidia-smi
Tue Sep 10 22:47:44 2019
+---+
| NVIDIA-SMI 418.87.00 Driver Version: 418.87.00 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | 00000000:00:04.0 Off | 0 |
| N/A 59C P0 82W / 149W | 0MiB / 11441MiB | 100% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

Okay, now we have a GPU running! Almost there, we just need to install Pytorch.

4.3 Install Pytorch

Copy command from https://pytorch.org/get-started/locally/
Note, we have cuda 10.1, specify that version correctly

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

9

Once the installer finishes, check if torch agrees that GPU is available for use

python -c 'import torch; print(torch.cuda.is_available())'

4.4 Jupyter Lab (previously Jupyter Notebook)

https://github.com/jupyterlab/jupyterlab

$ conda install -c conda-forge jupyterlab

$ mkdir ~/work/pytorch-nlp
$ cd ~/work/pytorch-nlp
$ jupyter lab

5 Getting Started with Pytorch for NLP

$ mkdir ~/work/pytorch-nlp
$ cd ~/work/pytorch-nlp
$ jupyter lab

To be Continued with Another notebook

10

	Create a Virtual Machine using a Prebuilt Image for Pytorch
	Creating a VM manually and configuring it.
	Overview

	Google Compute Cloud
	Entities:
	Google Compute Console

	Create Project
	Estimate before you rent
	Create a Virtual Machine instance
	OS and disk.

	Login to the virtual machine
	Practice Starting Stoping Instance
	External IP
	Updating Resources of Virtual Machine (After Creation)
	Allow Network Ports

	Software Installation
	Install Conda
	Setup GPU drivers
	Install Pytorch
	Jupyter Lab (previously Jupyter Notebook)

	Getting Started with Pytorch for NLP

