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While coding an arti�cial soul for machines
He wins his gifts, defeats his curses
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Abstract

Machine translation (MT) is one of the earliest and most successful applications of natural language
processing. Many MT services have been deployed via web and smartphone apps, enabling
communication and information access across the globe by bypassing language barriers. However,
MT is not yet a solved problem. MT services that cover the most languages cover only about a
hundred; thousands more are currently unsupported. Even for the currently supported languages,
the translation quality is far from perfect.

A key obstacle in our way to achieving usable MT models for any language is data imbalance.
On the one hand, machine learning techniques perform subpar on rare categories, having only
a few to no training examples. On the other hand, natural language datasets are inevitably
imbalanced with a long tail of rare types. The rare types carry more information content, and
hence correctly translating them is crucial. In addition to the rare word types, rare phenomena
also manifest in other forms as rare languages and rare linguistic styles.

Our contributions towards advancing rare phenomena learning in MT are four-fold: (1) We
show that MT models have much in common with classi�cation models, especially regarding the
data imbalance and frequency-based biases. We describe a way to reduce the imbalance severity
during the model training. (2) We show that the currently used automatic evaluation metrics
overlook the importance of rare words. We describe an interpretable evaluation metric that treats
important words as important. (3) We propose methods to evaluate and improve translation
robustness to rare linguistic styles such as partial translations and language alternations in inputs.
(4) Lastly, we present a set of tools intended to advance MT research across a wider range of
languages. Using these tools, we demonstrate 600 languages to English translation, thus supporting
500 more rare languages currently unsupported by others.
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Chapter 1

Introduction

One day, either because of the demise of Moore’s law, or simply because we have done all the easy
stu�, the Long Tail will come back to haunt us. – Steedman (2008)

Naturally occurring observations are often imbalanced, i.e., some observations are very fre-
quent, while others are rare. Collecting such skewed (categorical) observations for training
machine learning (ML) classi�cation models results in imbalanced datasets, having frequent and
rare categories (also known as majority and minority categories, respectively). ML classi�ers
trained on imbalanced datasets typically achieve a lower performance on the rare categories than
the frequent categories. When focusing only on the overall system-level performance, the gap
between the frequent and rare categories’ performance may even go unnoticed, especially with
metrics which do not o�er a breakdown for each category. To illustrate this point, consider a cancer
detection problem with an imbalanced test set having 1% instances labeled as cancer-positive and
the remaining 99% instances labeled as cancer-negative. A model can achieve 99% overall accuracy
by assigning the majority label (i.e., cancer-negative) to all instances; however, the zero recall of
the minority category (i.e., cancer-positive) makes this system useless in practice.

While the rare categories having fewer examples are hard to learn from in practice, the
performance of minority categories are often important in real-world applications. Although
imbalanced categorical distributions are ubiquitous across domains and occur in most problem
types, the problems involving sequential data is of our interest in this thesis. Many real-world
problems can be modeled as sequences, e.g., whole-genome sequencing, weather forecasting,
�nancial market events forecasting, and natural language processing (NLP). The rare phenomena
learning with sequential data is an essential problem in all these applications: In the whole-genome
sequencing problem, detecting the genetic variants that lead to diseases is of special interest,
however they are a tiny minority among all genetic variants (Schubach et al., 2017). In the space
weather forecasting such as the solar �are prediction problem, the high intensity �are classes that
could lead to potentially adverse space-weather occur occasionally (Ahmadzadeh et al., 2019). In
the �nancial market forecasting, predicting events such as stock market crashes and economic
depressions is high stakes, however such events are (fortunately for the world but unfortunately
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for statistical learning) extremely rare. And �nally, in the natural language domain, the word
types that contain high information content have far fewer token instances than frequent types
such as stopwords.

Many sequence learning problems can be seen as special cases of the general sequence-to-
sequence learning problem, also known as sequence transduction. Sequence-to-sequence learning
is a many-to-many transformation having variable length sequences on both input and output
sides; e.g., machine translation (MT), automatic speech recognition, and text summary generation.
Sequence tagging is a synchronized many-to-many transformation in which the number of output
vectors is constrained to be the same as the input; e.g., part-of-speech tagging, and video frame
classi�cation. Sequence classi�cation is a many-to-one transformation in which the output side
is constrained to be a single vector; e.g., text classi�cation, and video classi�cation. Sequence
generation is a one-to-many transformation in which the input is constrained to have a single
vector; e.g., image captioning, or a special case of zero-to-many transformation, e.g., language
modeling. And �nally, the problems without sequential dependencies can be seen as one-to-
one transformations having a single vector each on both input and output sides; e.g., image
classi�cation. In this thesis, we focus on the general case of sequence-to-sequence transduction,
with MT as a case study.

MT is a task and the area of study concerned with making machines that can translate between
human languages.1 The advancements in communication technologies, such as the Internet,
social networks, and smartphones, have enabled instant and across-the-globe communication.
People relocating from one linguistic region to another for business, leisure, or refuge, has also
become increasingly common. As the speakers of a diverse set of languages interact with each
other, the need for bypassing language barriers is more of a necessity than a wish (Weaver, 1952).
MT o�ers an always-on, near real-time, and scalable solution at a much lower cost than human
translation. However, the translation task, which seems trivial for humans, is a non-trivial problem
for machines. MT involves both the understanding and generation of human languages, which
are hard problems on their own.

One complexity that is common across the whole spectrum of languages as well as within
each language is data imbalance. In any natural language, the word type distribution is very
skewed. A few word types occur very frequently, and a vast majority of types occur only rarely; a
distribution commonly known as Zip�an distribution (Zipf, 1949; Powers, 1998). For instance, in
modern American English, the most frequent type, ‘the’, alone has signi�cantly more tokens than
many tens of thousands of rare types (e.g., ‘regulator’, ‘tens’) tokens combined; see Figure 1.1a
for a visualization. In addition, the distributions of languages and speakers are also imbalanced;
the most popular 8 languages (i.e., 0.1% of 7,100), constitute a speaker population of 40% globally
(more details later). As visualized in Figure 1.1b, the rare types carry more information content
than common types (Shannon, 1948), hence, correctly translating and generating them is crucial
for good translation. Recent ML advancements have enabled systems that can produce �uent
translations, but the semantic adequacy is often lacking. This is not surprising, as �uency and

1Prior to the transistor revolution, most machines were mechanical, and machine translation was called mechanical
translation. Now, the term machine is synonymous with computer.
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grammar are primarily the result of high-frequency function words (which ML does well), whereas
low-frequency content words are essential for achieving semantic adequacy (Morrow, 1986;
Kestemont, 2014).
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Figure 1.1: Word type frequencies and information content, as observed in the Brown Corpus
(Kučera and Francis, 1967), which is retrieved using NLTK (Bird, 2006).

Thesis Statement: The need for improved performance on the long tail of rare categories, i.e., rare
phenomena learning problem, is ubiquitous across domains and problem types within machine
learning. This problem manifests in several forms in machine translation at both training and
evaluation stages: (1) rare words at training, (2) rare words at evaluation, (3) rare linguistic styles
such as code-switching, and (4) rare languages. By addressing these areas, we can improve our
ability to build higher quality, more comprehensive models. This thesis describes our e�orts at
addressing these areas and points to the most important next steps.

Rare Words at Training

MT has several choices for modeling approaches; currently, neural machine translation (NMT) is
the dominant paradigm. In Chapter 3, we show that NMT models, such as Transformers (Vaswani
et al., 2017), have much in common with classi�cation models, especially regarding data imbalance
and frequency-based biases. We emphasize that the naturally occurring type-token ratio in natural
languages yields an extremely imbalanced class distribution, and show ways to minimize the
severity of this data imbalance. We show that NMT models su�er from frequency based biases
resulting from imbalanced distributions, especially, the poor recall for rare types. We provide a
heuristic for e�ciently choosing the optimal vocabulary size.
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Rare Words at Evaluation

In the context of classi�cation, evaluation metrics can be broadly divided into macro and micro
metrics. The fundamental di�erence between these two kinds is whether to treat each instance2

or each class3 equally when aggregating system performance on a held-out dataset. When each
class has approximately the same number of instances, the distinction between macro- and micro-
metrics is unimportant. However, the distinction is important when the classes are imbalanced
in evaluation datasets, i.e., not all classes have approximately the same number of instances.
Micro metrics that treat each instance equally, e.g., accuracy, are not suitable on imbalanced class
distributions, especially when rare classes’ performance is important. To illustrate this point,
consider a binary classi�cation problem having a 95-to-5 imbalance ratio. Any model that labels
all instances as the majority class achieves 95% overall accuracy. However, such a metric is useless
in practice when performance on a minority class is important. Hence, careful consideration is
required in such class imbalanced settings.

Although word types in natural languages are imbalanced by nature, many widely used MT
metrics treat each token equally. As shown in Figure 1.2, the most frequent 30% of word types
comprise 95% token instances, but contribute only a small fraction of information content. The
remaining 70% of classes comprise a mere 5% of tokens, however, they contain a major portion of
the overall information content. Since the automatic metrics currently popular for MT evaluation
treat each token equally, they overlook the importance of rare types. In Chapter 4, we justify
an evaluation metric that treats important tokens as important (i.e., a macro metric). We show
that the metric has comparable performance with currently used metrics on direct evaluation of
translation quality, and is a strong indicator of downstream cross-lingual information retrieval
task. In addition, we �nd that the current MT models generally have poorer performance on rare
types than frequent types.

Rare Linguistic Styles: Language Alternation

We have multilingual MT models that can translate from hundreds of languages, but they are not
as robust as human translators. An interesting phenomenon in multilingual settings is language
alternation (also known as code-switching), in which speakers seamlessly alternate between
two or more languages in a single context (Myers-Scotton and Ury, 1977). This phenomenon is
common among second language learners, bilingual, and multilingual speakers.4 For instance, the

2We use ‘token’ and ‘instance’ interchangeably.
3We use ‘class’ and ‘type’ interchangeably.
4Although the exact statistics are unavailable, it is estimated that more than half of the world’s population is

bilingual (Grosjean, 2010). In Europe, where better statistics are available, as per 2016’s survey by European Union,
66.6% of people aged 25–64 speak at least two languages and 29.4% speak three or more. The number of bilinguals
and multilinguals has upward trends over the years.
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Figure 1.2: Cumulative probability distribution and information content as observed on the Brown
Corpus (English) (Kučera and Francis, 1967). Generation of 95% of tokens require learning the
top 30% of types only. However, much of the information content is in the remaining 70% types,
which yield only 5% of tokens in the corpus.

European Parliament5 and the Parliament of India6 hold debates in multilingual environments
where multilingual speakers frequently alter languages. Figure 1.3 shows an example of language
alternation. While multilingual human translators can adapt to such an unconventional linguistic
styles, in Chapter 5, we show that multilingual MT models, as currently built, are not robust to
such language alternations. In addition, we propose simple methods to evaluate and improve
robustness.

Original : “Ce moment when you start penser en deux langues at the same temps!"
French : “Ce moment quand vous commencez à penser en deux langues au même temps!"

English : “The moment when you start to think in two languages at the same time!"

Figure 1.3: Demonstration of language alternations between a pair of languages; French and
English are shown.

5https://web.archive.org/web/20220115222202/https://www.europarl.europa.eu/doceo/document/
CRE-9-2021-11-10_EN.pdf

6https://web.archive.org/web/20220105061052/http://loksabhadocs.nic.in/debatestextmk/17/
VII/01.12.2021.pdf
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Rare Languages

There are at least 7,100 known living languages on our planet (Eberhard et al., 2019); see Table 1.1
for a summary of statistics.7 The distribution of languages and speakers is also imbalanced. Current
MT e�orts have been targeted to the top hundred languages; there are no readily accessible machine
translation systems for thousands of languages.

In practice, to support translation of rarer languages, three items are essential: (a) e�cient
translation modeling, (b) powerful computing hardware, and (c) su�cient training data. NMT
modeling has made considerable progress: the current NMT models achieve better quality than
prior generation models in the limited training data settings; see Figure 1.4 for a visualization.
Computing hardware, especially GPUs, has signi�cantly progressed over the past decade, and
enabled the realization of larger and powerful models. Therefore, the only missing item in our
list is the training data. Even though datasets are unavailable for all languages, there exists some
quantity of data for at least 600 languages on the web. However, since the datasets are at various
sources where the formats and naming conventions are not uniform, the curation of datasets into
a usable format is a major challenge.

In Chapter 6, we present a set of tools open-sourced with the aim to advance translation
systems for all languages. These tools greatly simplify tasks such as downloading datasets, storing,
and accessing datasets, and training translation models as well as deploying them with web

7https://web.archive.org/web/20190401105648/https:/www.ethnologue.com/statistics/size
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application and RESTful APIs. Using these tools, we demonstrate the creation of one of the largest
multilingual translation models that supports translating 600 languages to English.

Population Range
Number of Languages Number of Speakers

Count Percent Cum% Total Percent Cum%
100M - 1B 8 0.1 0.10 2.8B 40.46 40.46

10M - 100M 86 1.2 1.30 2.8B 40.00 80.47
1M - 10M 313 4.4 5.70 1B 14.09 94.56
100k - 1M 977 13.7 19.50 310M 4.44 99.00
10k - 100k 1,812 25.5 44.90 62M 0.89 99.89

1k - 10k 1,966 27.6 72.60 7.5M 0.107 99.99
100 - 1k 1,042 14.7 87.20 0.5M 0.007

100.0
10 - 100 305 4.3 91.50 12k 0.0002

1 - 9 114 1.6 93.10 465 0.00001
0 314 4.4 97.60 0 0

Unknown 174 2.4 100.0
Total 7,111 7B

Table 1.1: Language and speaker statistics. Source: Ethnologue (Eberhard et al., 2019).

Overview

In this dissertation, we attempt to address rare phenomena learning in the sequence-to-sequence
transduction problem, with machine translation as a speci�c case. We present our �ndings in the
following order: In chapter 2, we review the machine learning background material required to
understand the subsequent chapters. In chapter 3, we focus on NMT and show the consequences of
imbalance on modeling decisions. We show that NMT models have undesirable frequency-based
biases; a notable bias is poor recall of rare types. In chapter 4, we show that currently used
evaluation metrics ignore the word type imbalance, and some new ones proposed are biased and
opaque; we present an interpretable evaluation metric that treats important words as important.
In chapter 5, we explore methods to measure and improve NMT robustness to rare linguistic styles
such as language alternation and partially translated inputs. In chapter 6, we present tools for
scaling NMT to rare languages. By applying our simpli�ed view of NMT as multi-class classi�er,
we develop a many-to-one translation model. While the current multilingual NMT e�orts are
limited to 100 languages, we expand translation support to 500 languages on the source side (i.e.,
400 extra rare languages). In chapter 7, we discuss related work. Finally, we provide a conclusion
and discuss future directions in chapter 8.
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Chapter 2

Background: Machine Translation

Machine translation (MT) is the problem of translating text from one natural language to another
using machine learning (ML) methods. An ML problem can be precisely de�ned as the problem
of improving some measure of performance when executing some task, through some type of
training experience (Mitchell, 2017). The MT problem typically involves learning from a set of
human translated text (also called parallel data, or bitext) with the goal of producing human-
like translations on unseen data. MT has been studied since the 1950s (Rei�er, 1954), and more
actively since the 1990s (Brown et al., 1988, 1993; Knight, 1999)1. Currently, neural machine
translation (NMT) (Sutskever et al., 2014; Vaswani et al., 2017) is the dominant MT paradigm,
which is described in the following.

2.1 Neural Machine Translation

Formally, MT is a sequence-to-sequence transduction task, i.e, a task of transforming sequences of
form G1:< = G1G2G3...G< to the form ~1:= = ~1~2~3...~= , where G1:< is in source language - and ~1:=
is in target language . . Each item in the sequence is a discrete token, i.e., ∀G8 ∈ +- and ∀~ 9 ∈ +. ,
where +- and +. are vocabularies of - and . languages, respectively.

NMT uses arti�cial neural networks to achieve translation. Historically, MT pipelines involved
a set of independently optimized components such as parsers, word aligners, and language models.
NMT simpli�es the pipeline by enabling end-to-end optimization of all parameters to achieve the
translation objective. Even though there are many variations of NMT architectures, all share the
common objective of:

\̂ = arg max
\∈Θ

∏
(G1:<,~1:=)∈D

% (~1:= |G1:<;\ )

1https://web.archive.org/web/20170310234937/https://www.statmt.org/survey
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where \ is the set of all parameters, and D is a set of parallel sentences. For most cases, the
above objective function is decomposed autoregressively as

\̂ = arg max
\∈Θ

∏
(G1:<,~1:=)∈D

=∏
C=1

% (~C |~<C , G1:<;\ )

Maximization of likelihood is equivalent to minimization of negative log likelihood:

\̂ = − arg min
\∈Θ

∑
(G1:<,~1:=)∈D

=∑
C=1

log % (~C |~<C , G1:<;\ )

In practice,

\̂ = − arg min
\∈Θ

E
(G1:<,~1:=)∈D

1
=

=∑
C=1

log % (~C |~<C , G1:<;\ )

The discriminator function is commonly implemented as a pair of Encoder-Decoder networks.
Formally,

% (~C |~<C , G1:<) = Decoder(~<C , Encoder(G1:<;q);k )

Multiple implementations for Encoder and Decoder are available: recurrent neural networks
(RNN) such as Long Short-Term Memory (Sutskever et al., 2014; Hochreiter and Schmidhuber,
1997) and Gated Recurrent Unit (Cho et al., 2014a,b), RNN with attention (Bahdanau et al., 2015a;
Luong et al., 2015), convolutional neural networks (CNN) (Gehring et al., 2017) and Transformer
(Vaswani et al., 2017). We use Transformer for all our NMT experiments in the later chapters as it
is the current best performing model. We refer to Rush (2018) for the implementation details of
Transformer.

At the inference time, the model’s hypothesis sequence is generated in a loop, with ℎ0 = <s>,
a special token denoting the beginning-of-sequence, until ℎC = [/s], denoting the end-of-sequence.
Both <s> and </s> are special types added to vocabulary +. . Similarly, during the training time,
the sequence ~1:= has a pre�x, ~0 = <s>, and su�x, ~=+1 = </s>, to resemble the inference time
conditions.

At each time step C during inference, the hypothesis token is predicted as,

ℎC = arg max
2∈+.

% (2 |ℎ<C , G1:<), for C = 1, 2, ... until ℎC = </s>

The above greedy decision of choosing local maximum at each time step may lead to search
errors. We use beam search to further improve the overall sequence generation quality.

2.2 Evaluation

Evaluation of ML models is essential to keep track of progress made on a task, to separate good
ideas from the bad, and also to determine the best one among several competing choices. Manual
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evaluation, although desired, is often slow, expensive, and infeasible. Hence, automatic evaluation
metrics are used whenever possible. The choice of evaluation metric varies from task to task. The
following sections describe common metrics used in classi�cation and machine translation tasks.

Notation: consider a set of � = {1, 2, .. } classes, and a held-out set, ) = {(G (8), ~ (8), ℎ(8)) |8 =
1, 2, 3, ...# }, where G (8) is the input, ~ (8) ∈ � is the ground truth (i.e., gold labels) and ℎ(8) ∈ � is
a prediction from an ML model (also known as the hypothesis). Let 1(~ (8), ℎ(8)) be an indicator
function with unity value when arguments match, and zero otherwise. For notational simplicity,
let 1(~ (8), ℎ(8), 2) = 1(~ (8), ℎ(8)) × 1(ℎ(8), 2).

2.2.1 Classi�er Evaluation

Accuracy is one of the most simple and widely used evaluation metrics, which is computed as:

�22DA02~ =

∑#
8 1(~ (8), ℎ(8))

#

Accuracy provides an overall system performance by treating each instance equally. For a
�ne-grained performance report, we compute Precision (%2 ) and Recall ('2 ) measures separately
for each class type (2) as:

%2 =

∑#
8 1(~ (8), ℎ(8), 2)∑#
9 1(ℎ( 9), 2)

'2 =

∑#
8 1(~ (8), ℎ(8), 2)∑#
9 1(~ ( 9), 2)

F-measure combines both precision and recall metrics using harmonic mean, as:

�V ;2 =
(1 + V2) × %2 × '2
(V2 × %2) + '2

where parameter V controls the relative importance of precision and recall. While in most
applications, precision and recall are equally important (i.e., V = 1), in certain scenarios, recall
may be more important than precision (or vice versa). For example, V = 2 implies that recall is
twice as important as precision.

The overall performance of a classi�cation system is obtained by taking an average of perfor-
mance across all classes.

,486ℎC43�V =

∑ 
2=1F2 × �V ;2∑ 

9=1F 9
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whereF2 is the weight assigned to class. If the held-out dataset has balanced classes, i.e., all classes
have approximately the same number of instances, the methodology used to average across classes
is uninteresting.2

However, in the imbalanced classes scenarios, the averaging methodology requires careful
consideration. There are two schools of thought about choice forF2 :

• Micro-averaging: Treats each instance equally, i.e.,F2 = 5 A4@(2) =
∑#
8=1 1(~ (8), 2). In this

method, classes with more instances (i.e., majority classes) have a huge impact on system
performance compared to classes with fewer instances (i.e., minority classes).

"82A>�V =

∑ 
2=1 5 A4@(2) × �V ;2

#
(2.1)

In problems having exactly one label per instance (i.e., not multi-label classi�cation), both
micro-precision ("82A>% ) and micro-recall ("82A>% ) are equal to accuracy, which is equiva-
lent to "82A>� . Therefore, all these micro metrics can be e�ciently calculated as,

"82A>% = "82A>' = "82A>� =

∑#
8 1(~ (8), ℎ(8))

#
(2.2)

• Macro-averaging: Treats each class equally, i.e.,F2 = 1,∀2 ∈ � .

"02A>�V =

∑ 
2=1 �V ;2

 
(2.3)

In this method, all classes have equal contribution to system performance. As a result, in
imbalanced class datasets, minority class instances have higher weights than majority class
instances.

2.2.2 Machine Translation Evaluation: BLEU

BLEU (Papineni et al., 2002) is the most popular evaluation metric for machine translation,
formulated as the geometric mean of n-gram precision (%=), up to 4-grams.

�!�* = �% ×
( 4∏
==1

%=

) 1
4

where, BP is brevity penalty, intended to penalize shorter translations resulting from poor recall.

�% = exp(min{1 − '
�
, 0})

2The research community has avoided dealing with class imbalance by using balanced held-out sets; e.g., SNLI
(MacCartney and Manning, 2008), CIFAR-{10,100} (Krizhevsky, 2009), sentiment classi�cation of IMDb reviews (Maas
et al., 2011), MultiNLI (Williams et al., 2018), XNLI (Conneau et al., 2018).
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where, ' and � are lengths (i.e., number of tokens) of reference and hypothesis, respectively.
To compute n-gram precision, %= , we need the following utilities:
Let Ngram(=, 0) return the set of all n-gram types in sequence 0,

Ngram(=, 0) = {08:8+=}8∈[1,2,...( |0 |+1−=)]
where, |0 | is the length of sequence 0 (i.e., number of tokens). Let Ngrams(=) return all

n-grams from all hypotheses,

Ngrams(=) =
#⋃
8=1

Ngram(=,ℎ(8))

Finally, the combined precision for n-grams of size = ∈ [1, 4],

%= =

∑
2∈Ngrams(=) freq(2) · %2∑
2 ′∈Ngrams(=) freq(2′)

(2.4)

where %2 is precision of n-gram type 2 , and freq(2) is frequency of 2 in hypotheses.
As mentioned in Section 2.2.1, there exist an e�cient method for calculating micro metrics

which does not keep track of performance per each class type (see Equations 2.1 and 2.2). Similarly,
%= can also be e�ciently calculated as following:

%= =

∑#
8

∑
2∈Ngram(=,ℎ (8) ) min{Count(2, ℎ(8)),Count(2,~ (8))}∑#

9 ( |ℎ( 9) | + 1 − =)
(2.5)

where Count(2, 0) return the total times n-gram type 2 occur in sequence 0.
We highlight two shortcomings of Bleu regarding rare phenomena learning:

1. As per our categorization of metrics in Section 2.2.1, BLEU is a micro metric, as it treats
each n-gram instance equally.

2. Bleu implementations provide %= , which is the combined precision of all grams of length
=, and do not provide performance breakdown for each n-gram type. For instance, Bleu
provides %1 which is the combined precision of all unigrams, but not precision of a speci�c
type, such as %Cℎ4 . Similarly, Bleu does not provide recall measure for types. Precision
and recall measures for each class type is important to recognize performance di�erence
between frequent and rare types.

We address these two shortcomings in a later chapter.
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Chapter 3

Rare Words at Training: Finding the Optimal Vocabulary

Natural language processing tasks such as sentiment analysis (Maas et al., 2011; Zhang et al.,
2015) and spam detection are modeled as classi�cation tasks, where instances are independently
labeled. Tasks such as part-of-speech tagging and named entity recognition (Tjong Kim Sang and
De Meulder, 2003) are examples of structured classi�cation tasks, where instance classi�cation
is decomposed into a sequence of per-token contextualized labels. We can similarly cast NMT,
an example of a natural language generation task, as a form of structured classi�cation, where
an instance label (a translation) is generated as a sequence of contextualized labels, here by an
autoregressor (see Section 3.1).

Since the parameters of ML classi�cation models are estimated from training data, whatever
biases exist in the training data will a�ect model performance. Among those biases, class imbalance
is a topic of our interest. Class imbalance is said to exist when one or more classes are not of
approximately equal frequency in data. The e�ect of class imbalance has been extensively studied in
several domains where classi�ers are used (see Section 7.1). With neural networks, the imbalanced
learning problem is mostly targeted to computer vision tasks such as image segmentation; NLP
tasks are under-explored (Johnson and Khoshgoftaar, 2019).

Word types in natural language models resemble a Zip�an distribution, i.e., in any natural
language corpus, we observe that a type’s rank is roughly inversely proportional to its frequency.
Thus, a few types are extremely frequent, while most of the rest lie on the long tail of infrequency.
Zip�an distributions cause two problems in classi�er-based NLG systems:

1. Unseen Vocabulary: Any hidden data set may contain types not seen in the �nite set used
for training. A sequence of words drawn from a Zip�an distribution is likely to have many
rare types, and these are likely to have not been seen in training(Kornai, 2002).

2. Imbalanced Classes: There are a few extremely frequent types and many infrequent types,
causing an extreme imbalance. Such an imbalance, in other domains where classi�ers are
used, is known to cause undesired biases and severe performance degradation (Johnson and
Khoshgoftaar, 2019).

The use of subwords, that is, decomposition of word types into pieces, such as the widely used
Byte Pair Encoding (BPE) (Sennrich et al., 2016b) addresses the open-ended vocabulary problem
by ultimately allowing a word to be represented as a sequence of characters if necessary. BPE
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has a single hyperparameter named merge operations that governs the vocabulary size. The e�ect
of this hyperparameter is not well understood. In practice, it is either chosen arbitrarily or via
trial-and-error (Salesky et al., 2018).

Regarding the problem of imbalanced classes, Steedman (2008) states that “the machine learning
techniques that we rely on are actually very bad at inducing systems for which the crucial information
is in rare events.” However, to the best of our knowledge, this problem has not yet been directly
addressed in the NLG setting.

In this chapter, we attempt to �nd answers to these questions: ‘What value of BPE vocabulary
size is best for NMT?’, and more crucially an explanation for ‘Why that value?’. As we will see, the
answers and explanations for those are an immediate consequence of a broader question, namely
‘What is the impact of Zip�an imbalance on classi�er-based NLG?’

The organization of this chapter is as follows: We o�er a simpli�ed view of NMT architectures
by re-envisioning them as two high-level components: a classi�er and an autoregressor (Section 3.1).
We describe some desired settings for the classi�er (Section 3.1.1) and autoregressor (Section 3.1.2)
components. In Section 3.1.3, we describe how vocabulary size choice relates to the desired settings
for the two components. Our experimental setup is described in Section 3.2, followed by an analysis
of results in Section 3.3 that o�ers an explanation with evidence for why some vocabulary sizes
are better than others. Section 3.4 uncovers the impact of class imbalance, particularly frequency
based discrimination on classes.1 In Section 3.5, we recommend a heuristic for choosing the BPE
hyperparameter.

3.1 Classi�er based NLG

As discussed in Chapter 2, MT is the task of transforming sequences from the form G = G1G2G3...G<
to ~ = ~1~2~3...~= , where, G is in source language - and ~ is in target language . . There are
many variations of NMT architectures, however, all share the common objective of maximizing∏=
C=1 % (~C |~<C , G1:<) for pairs (G1:<, ~1:=) sampled from a parallel dataset. NMT architectures are

commonly viewed as encoder-decoder networks. We instead re-envision the NMT architecture as
two higher level components: an autoregressor (') and a multi-class classi�er (�), as shown in
Figure 3.1.

Autoregressor ', (Box et al., 2015) being the most complex component of the NMT model, has
many implementations based on various neural network architectures: recurrent neural networks
(RNN) such as long short-term memory (LSTM) and gated recurrent unit (GRU), convolutional
neural networks (CNN), and Transformer. At time step C , ' transforms the input context ~<C , G1:<
into hidden state vector ℎC = '(~<C , G1:<).

Classi�er � is the same across all architectures. It maps ℎC to a distribution % (~ 9 |ℎC )∀~ 9 ∈ +. ,
where+. is the vocabulary of. . Input to classi�ers such as� is generally described as features that
are either hand-engineered or automatically extracted. In our high-level view of NMT architectures,
' is a neural network that serves as an automatic feature extractor for � .

1In this chapter, ‘type’ and ‘class’ are used interchangeably.
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Figure 3.1: The NMT model re-envisioned as a token classi�er with an autoregressive feature
extractor.

3.1.1 Balanced Classes for Token Classi�er

Untreated, class imbalance leads to bias based on class frequencies. Speci�cally, classi�cation
learning algorithms focus on frequent classes while paying relatively less importance to infrequent
classes. Frequency-based bias leads to poor recall of infrequent classes (Johnson and Khoshgoftaar,
2019).

When a model is used in a domain mismatch scenario, i.e., where test and training set distribu-
tions do not match, model performance generally degrades. It is not surprising that frequency-
biased classi�ers show particular degradation in domain mismatch scenarios, as types that were
infrequent in the training distribution and were ignored by the learning algorithm may appear
with high frequency in the new domain. Koehn and Knowles (2017) showed empirical evidence of
poor generalization of NMT to out-of-domain datasets.

In other classi�cation tasks, where each instance is classi�ed independently, methods such
as up-sampling infrequent classes and down-sampling frequent classes are used. In NMT, since
classi�cation is done within the context of sequences, it is possible to accomplish the objective
of balancing by altering sequence lengths. This can be done by choosing the level of subword
segmentation (Sennrich et al., 2016b).

Quanti�cation of Zip�an Imbalance: We use two statistics to quantify the imbalance of a
training distribution:

The �rst statistic relies on a measure of Divergence (�) from a balanced (uniform) distribution.
We use a simpli�ed version of Earth Mover Distance, in which the total cost for moving a probability
mass between any two classes is the sum of the total mass moved. Since any mass moved out of
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one class is moved into another, we divide the total per-class mass moves in half to avoid double
counting. Therefore, the imbalance measure � on  class distributions where ?8 is the observed
probability of class 8 in the training data is computed as:

� =
1
2

 ∑
8=1
|?8 −

1
 
|; 0 ≤ � ≤ 1

A lower value of � is the desired setting for � , since the lower value results from a balanced
class distribution. When classes are balanced, they have approximately equal frequencies; � is
thus less likely to make errors due to class bias.

The second statistic is Frequency at 95th% Class Rank (�95%), de�ned as the least frequency
in the 95Cℎ percentile of most frequent classes. More generally, �%% is a simple way of quantifying
the minimum number of training examples for at least the %th percentile of classes. The bottom
(1 − %) percentile of classes are ignored to avoid the noise that is inherent in the real-world
natural-language datasets.

A higher value for �95% is the desired setting for � , as a higher value indicates the presence of
many training examples per class, and ML methods are known to perform better when there are
many examples for each class.

3.1.2 Shorter Sequences for Autoregressor

Every autoregressive model is an approximation; some may be better than others, but no model is
perfect. The total error accumulated grows in proportion to the length of the sequence. These
accumulated errors alter the prediction of subsequent tokens in the sequence. Even though beam
search attempts to mitigate this, it does not completely resolve it. These challenges with respect
to long sentences and beam size are examined by Koehn and Knowles (2017).

We summarize sequence lengths using Mean Sequence Length, `, computed trivially as the
arithmetic mean of the lengths of target language sequences after encoding them: ` = 1

#

∑#
8=1 |~ (8) |

where ~ (8) is the 8th sequence in the training corpus of # sequences. Since shorter sequences have
relatively fewer places where an imperfectly approximated autoregressor model can make errors,
a smaller ` is a desired setting for '.

3.1.3 Choosing the Vocabulary Size Systematically

BPE (Sennrich et al., 2016b) is a greedy iterative algorithm often used to segment a vocabulary into
useful subwords. The algorithm starts with characters as its initial vocabulary. In each iteration, it
greedily selects the most frequent type bigram in the training corpus, and replaces the sequence
with a newly created compound type. Once the subword vocabulary is learned, it can be applied to
a corpus by greedily segmenting words with the longest available subword type. These operations
have an e�ect on � , �95%, and `.
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E�ect of BPE on `: BPE expands rare words into two or more subwords, lengthening a
sequence (and raising `) relative to simple white-space segmentation. BPE merges frequent-
character sequences into one subword piece, shortening a sequence (and lowering `) relative to
character segmentation. Hence, the sequence length of BPE segmentation lies in between the
sequence lengths obtained by white-space and character-only segmentation methods (Morishita
et al., 2018).

E�ect of BPE on �95% and � : Whether BPE is viewed as a merging of frequent subwords into
a relatively less frequent compound, or a splitting of rare words into relatively frequent subwords,
BPE alters the class distribution by moving the probability mass of classes. Hence, by altering the
class distribution, BPE also alters both �95% and � . The BPE hyperparameter controls the amount
of probability mass moved between subwords and compounds.

Figure 3.2 shows the relation between number of BPE merges (i.e. the BPE hyperparameter),
and both � and `. When few BPE merge operations are performed, we observe the lowest value of
� , which is a desired setting for� , but at the same point ` is large and undesired for ' (Section 3.1).
When a large number of BPE merges are performed, the e�ect is reversed, i.e. we observe that �
is large and unfavorable to � while ` is small and favorable to '. In the following sections we
describe our experiments and analysis to locate the optimal number of BPE merges that achieves
the right trade-o� for both � and '.
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Figure 3.2: E�ect of BPE merge operations on mean sequence length (`) and class imbalance (�).
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3.2 Experimental Setup

Our NMT experiments use the base Transformer model (Vaswani et al., 2017) on four di�erent
target languages at various training data sizes, described in the following subsections.

3.2.1 Datasets

We use the following four language pairs for our analysis: English→German, German→English,
English→Hindi, and English→Lithuanian. To analyze the impact of di�erent training data sizes,
we randomly sub-select smaller training corpora for English↔German and English→Hindi lan-
guage pairs. Statistics regarding the corpora used for validation, testing, and training are in
Table 3.1. The datasets for English↔German, and English→Lithuanian are retrieved from the
News Translation task of WMT2019 (Barrault et al., 2019b).2 For English→Hindi, we use the IIT
Bombay Hindi-English parallel corpus v1.5 (Kunchukuttan et al., 2018). English, German, and
Lithuanian sentences are tokenized using SacreMoses.3 Hindi sentences are tokenized using
IndicNlpLibrary.4

The training datasets are trivially cleaned: we exclude sentences with length in excess of
�ve times the length of their parallel counterparts. Since the vocabulary is a crucial part of this
analysis, we exclude all sentence pairs containing URLs.

Languages Training Sentences EN Toks XX Toks Validation Test

DE→EN
EN→DE

Europarl v10
WMT13CommonCrawl
NewsCommentary v14

30K 0.8M 0.8M

NewsTest18 NewsTest19
0.5M 12.9M 12.2M

1M 25.7M 24.3M
4.5M 116M 109.8M

EN→HI IITB Training
0.5M 8M 8.6M

IITB Dev IITB Test
1.3M 21M 22.5M

EN→LT Europarl v10 0.6M 17M 13.4M NewsDev19 NewsTest19

Table 3.1: Training, validation, and testing datsets, along with sentence and token counts in
training sets. We generally refer to dataset’s sentences as size in this chapter.

3.2.2 Hyperparameters

Our model is a 6 layer Transformer encoder-decoder that has 8 attention heads, 512 hidden vector
units, and a feed forward intermediate size of 2048, with GELU activation. We use label smoothing

2http://www.statmt.org/wmt19/translation-task.html
3https://github.com/alvations/sacremoses
4https://github.com/anoopkunchukuttan/indic_nlp_library
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at 0.1, and a dropout rate of 0.1. We use the Adam optimizer (Kingma and Ba, 2015) with a
controlled learning rate that warms up for 16K steps followed by the decay rate recommended
for training Transformer models (Popel and Bojar, 2018). To improve performance at di�erent
data sizes, we set the mini-batch size to 6K tokens for the 30K-sentence datasets, 12K tokens
for 0.5M-sentence datasets, and 24K for the remaining larger datasets (Popel and Bojar, 2018).
All models are trained until no improvement in validation loss is observed, with patience of 10
validations, each done at 1,000 update steps apart. Our model is implemented using PyTorch
and run on NVIDIA P100 and V100 GPUs. To reduce padding tokens per batch, mini-batches are
made of sentences having similar lengths (Vaswani et al., 2017). We trim longer sequences to a
maximum of 512 tokens after BPE. To decode, we average the last 10 checkpoints, and use a beam
size of 4 with length penalty of 0.6, similar to Vaswani et al. (2017).

Since the vocabulary size hyperparameter is the focus of this analysis, we use a range of
vocabulary sizes that include character vocabulary and BPE operations that yield vocabulary
sizes between 500 and 64K types. A common practice, as seen in Vaswani et al. (2017)’s setup,
is to jointly learn BPE for both source and target languages, which facilitates three-way weight
sharing between the encoder’s input, the decoder’s input, and the output (i.e., classi�er’s class)
embeddings (Press and Wolf, 2017). However, to facilitate �ne-grained analysis of vocabulary sizes
and their e�ect on class imbalance, our models separately learn source and target vocabularies;
weight sharing between the encoder’s and decoder’s embeddings is thus not possible. For the
target language, however, we share weights between the decoder’s input and the classi�er’s class
embeddings.

3.3 Results and Analysis

BLEU scores for DE→EN and EN→DE experiments are reported in Figures 3.3a and 3.3b respec-
tively. Results from EN→HI, and EN→LT are combined in Figure 3.4. All the reported BLEU
scores are obtained using SacreBleu (Post, 2018).5

We make the following observations: smaller vocabulary such as characters have not produced
the best BLEU for any of our language pairs or dataset sizes. A vocabulary of 32K or larger is
unlikely to produce optimal results unless the data set is large e.g. the 4.5M DE↔EN sets. The
BLEU curves as a function of vocabulary sizes have a shape resembling a hill. The position of the
peak of the hill seems to shift towards a larger vocabulary when the datasets are large. However,
there is a lot of variance in the position of the peak: one extreme is at 500 types on 0.5M EN→HI,
and the other extreme is at 64K types in 4.5M DE→EN.

Although Figures 3.3 and 3.4 indicate where the optimal vocabulary size is for these chosen
language pairs and datasets, the question of why the peak is where it is remains unanswered.
We visualize `, � , and �95% in Figures 3.6 and 3.6 to answer that question, and report these
observations:

5BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.6
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Figure 3.3: EN↔DE NewsTest2019 BLEU as a function of vocabulary size at various training set
sizes. Only the large dataset with 4.5M sentences has its best performance at a large vocabulary;
all others peak at an 8K or smaller vocabulary size.

1. Small vocabularies have a relatively larger �95% (favorable to classi�er), yet they are subopti-
mal. We reason that this is due to the presence of a larger `, which is unfavorable to the
autoregressor.
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Figure 3.4: BLEU on EN→HI IITB Test and EN→LT NewsTest2019 as a function of vocabulary
size. These language pairs observed the best BLEU scores in the range of 500 to 8K vocabulary
size.

2. Larger vocabularies such as 32K and beyond have a smaller `, which favors the autoregressor,
yet rarely achieves the best BLEU. We reason this is due to the presence of a lower �95%
and a higher � being unfavorable to the classi�er. Since the larger datasets have many
training examples for each class, as indicated by a generally larger �95%, we conclude that
bigger vocabularies tend to yield optimal results compared to smaller datasets in the same
language.

3. On small (30K) to medium (1.3M) data sizes, the vocabulary size of 8K seems to �nd a good
trade-o� between ` and � , as well as between ` and �95%.

There is a simple heuristic to locate the peak: the near-optimal vocabulary size is where
sentence length ` is small, while �95% is approximately 100 or higher.

BLEU scores are often lower at larger vocabulary sizes—where ` is (favorably) low but �
is (unfavorably) high (Figure 3.6). This calls for a further investigation that is discussed in the
following section.

3.4 Measuring Classi�er Bias Due to Imbalance

In a typical classi�cation setting with imbalanced classes, the classi�er learns an undesired bias
based on frequencies.

A balanced class distribution debiases in this regard, leading to improvement in the precision
of frequent classes as well as recall of infrequent classes. However, BLEU focuses only on the
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Figure 3.5: Correlation analysis on DE→EN and EN→DE shows that NMT models su�er from
frequency based class bias, indicated by non-zero correlation of both precision and recall with
class rank. Reduction in class imbalance (D), as shown by the horizontal axis, generally reduces
the bias as indicated by the reduction in magnitude of correlation.

precision of classes; except for adding a global brevity penalty, it is ignorant of the poor recall of
infrequent classes.
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Therefore, the BLEU scores shown in Figures 3.3a, 3.3b and 3.4 capture only a part of the
improvements and biases. In this section, we perform a detailed analysis of the impact of class
balancing by considering both precision and recall of classes.

We accomplish this in two stages: First, we de�ne a method to measure the bias of the model
for classes based on their frequencies. Second, we track the bias in relation to vocabulary size and
class imbalance, and report DE→EN, as it has many data points.

3.4.1 Frequency Based Bias

We measure frequency bias using the Pearson correlation coe�cient, d , between class rank and
class performance, while for performance measures we use precision and recall. Classes are ranked
based on descending order of frequencies in the training data, encoded with the same encoding
schemes used for reported NMT experiments. With this setup, the class with rank 1, say �1, is the
one with the highest frequency, rank 2 is the next highest, and so on. More generally, �2 is an
index in the class rank list which has an inverse relation to class frequencies.

Following our de�nitions in Section 2.2, we compute precision (%2 ) and recall ('2 ) for each
class 2 . The Pearson correlation coe�cients between class rank and precision (d�,% ), and class
rank and recall (d�,') are reported in Figure 3.5. In datasets where � is high, the performance of
classi�er correlates with class rank. Such correlations are undesired for a classi�er.

3.4.2 Analysis of Class Frequency Bias

An ideal classi�er is one that does not discriminate classes based on their frequencies, i.e., one
that exhibits no correlation between d�,% , andd�,' . However, we see in Figure 3.5 that:

1. d�,% is positive when the dataset has high � ; i.e. if the class rank increases (frequency
decreases), precision increases in relation to it. This indicates that frequent classes have
relatively less precision than infrequent classes. The bias is strongly positive on smaller
datasets such as 30K DE→EN, which gradually diminishes if the training data size is
increased or a vocabulary setting is chosen to reduce � .

2. d�,' is negative, i.e., if the class rank increases, recall decreases in relation to it. This is an
indication that infrequent classes have relatively lower recall than frequent classes.

Figure 3.5 shows a trend that frequency based bias measured by correlation coe�cient is lower in
settings that have lower � . However, since � is non-zero, there still exists non-zero correlation
between recall and class rank (d�,'), indicating the poorer recall of low-frequency classes.

3.5 Conclusion

Envisioning NMT as a multi-class classi�er with an autoregressor helps in analyzing its weaknesses.
Our analysis provides an explanation ofwhy text generation using BPE vocabulary is more e�ective
compared to word and character vocabularies, and why certain BPE hyperparameters are better
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than others. We show that the number of BPE merges is not an arbitrary hyperparameter, and that
it can be tuned to address the class imbalance and sequence length problems. Our recommendation
for Transformer NMT is to use the largest possible BPE vocabulary, such that at least 95% of classes
have 100 or more examples in training. Even though certain BPE vocabulary sizes indirectly reduce
the class imbalance, they do not completely eliminate it. The class distributions after applying
BPE contain su�cient imbalance for inducing the frequency based bias, especially a�ecting the
recall of rare classes. Hence, more e�ort in the future is needed to directly address the Zip�an
imbalance.
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Figure 3.6: Visualization of sequence length (`) (lower is better), class imbalance (D) (lower is
better), frequency of 95Cℎ percentile class (�95%) (higher is better; plotted in logarithmic scale),
and test set BLEU (higher is better) on all language pairs and training data sizes. The vocabulary
sizes that achieved highest BLEU are indicated with dashed vertical lines, and the vocabulary our
heuristic selects is indicated by dotted vertical lines.

25



Char 500 1K 2K 4K 8K 16K 32K 48K 64K
Vocabulary Size

0

25

50

75

100

125

150

175

200

Le
ng

th
 (

)

Best: 48K, 64K types, 36.2 BLEU
Heuristic: 32K types, 35.9 BLEU

Length ( ) BLEU Imbalance(D) Freq@95%

0

5

10

15

20

25

30

35

40

B
LE

U

0.0

0.2

0.4

0.6

0.8

1.0

Im
ba

la
nc

e(
D

)

100

101

102

103

104

105

Fr
eq

@
95

%

DE EN 4.5M NewsTest2019

Char 500 1K 2K 4K 8K 16K 32K 48K 64K
Vocabulary Size

0

25

50

75

100

125

150

175

200
Le

ng
th

 (
)

Best: 8K types, 33.0 BLEU
Heuristic: 16K types, 32.8 BLEU

Length ( ) BLEU Imbalance(D) Freq@95%

0

5

10

15

20

25

30

35

40

B
LE

U

0.0

0.2

0.4

0.6

0.8

1.0

Im
ba

la
nc

e(
D

)

100

101

102

103

104

105

Fr
eq

@
95

%

EN DE 1M NewsTest2019

Char 500 1K 2K 4K 8K 16K 32K 48K 64K
Vocabulary Size

0

25

50

75

100

125

150

175

200

Le
ng

th
 (

)

Best: 48K types, 36.9 BLEU
Heuristic: 48K types, 36.9 BLEU

Length ( ) BLEU Imbalance(D) Freq@95%

0

5

10

15

20

25

30

35

40

B
LE

U

0.0

0.2

0.4

0.6

0.8

1.0

Im
ba

la
nc

e(
D

)

100

101

102

103

104

105

Fr
eq

@
95

%

EN DE 4.5M NewsTest2019

Char 500 1K 2K 4K 8K 16K 32K 48K 64K
Vocabulary Size

0

25

50

75

100

125

150

175

200

Le
ng

th
 (

)

Best: 500 types, 15.8 BLEU
Heuristic: 8K types, 15.7 BLEU

Length ( ) BLEU Imbalance(D) Freq@95%

10

12

14

16

18

20

22

24

B
LE

U

0.0

0.2

0.4

0.6

0.8

1.0

Im
ba

la
nc

e(
D

)

100

101

102

103

104

105

Fr
eq

@
95

%

EN HI 0.5M IITB Test

Char 500 1K 2K 4K 8K 16K 32K 48K 64K
Vocabulary Size

0

25

50

75

100

125

150

175

200
Le

ng
th

 (
)

Best: 8K types, 18.1 BLEU
Heuristic: 16K types, 17.7 BLEU

Length ( ) BLEU Imbalance(D) Freq@95%

10

12

14

16

18

20

22

24

B
LE

U

0.0

0.2

0.4

0.6

0.8

1.0

Im
ba

la
nc

e(
D

)

100

101

102

103

104

105

Fr
eq

@
95

%

EN HI 1.3M IITB Test

Char 500 1K 2K 4K 8K 16K 32K 48K 64K
Vocabulary Size

0

25

50

75

100

125

150

175

200

Le
ng

th
 (

)

Best: 2K types, 20.5 BLEU
Heuristic: 8K types, 19.8 BLEU

Length ( ) BLEU Imbalance(D) Freq@95%

10

12

14

16

18

20

22

24

B
LE

U

0.0

0.2

0.4

0.6

0.8

1.0

Im
ba

la
nc

e(
D

)

100

101

102

103

104

105

Fr
eq

@
95

%

EN LT 0.6M NewsTest2019

Figure 3.6: Continuation of Figure 3.6 (see previous page for caption)
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Chapter 4

Evaluation: Rare Words are Important Too

“The test of our progress is not whether we add more to the abundance of those who have much;
it is whether we provide enough for those who have too little." — Franklin D. Roosevelt, 1937

Model-based metrics for evaluating machine translation such as BLEURT (Sellam et al., 2020),
ESIM (Mathur et al., 2019), and YiSi (Lo, 2019) have recently attracted attention due to their
superior correlation with human judgments (Ma et al., 2019). However, Bleu (Papineni et al., 2002)
remains the most widely used corpus-level MT metric. It correlates reasonably well with human
judgments, and moreover is easy to understand and cheap to calculate, requiring only reference
translations in the target language. By contrast, model-based metrics require tuning on thousands
of examples of human evaluation for every new target language or domain (Sellam et al., 2020).
Model-based metric scores are also opaque and can hide undesirable biases, as can be seen in
Table 4.1.

The source of model-based metrics’ (e.g., BLEURT) correlative superiority over model-free
metrics (e.g., BLEU) appears to be the former’s ability to focus evaluation on adequacy, while
the latter are overly focused on �uency. BLEU and most other generation metrics consider each
output token equally. Since natural language is dominated by a few high-count types, an MT
model that concentrates on getting its if s, ands and buts right will bene�t from BLEU in the long
run more than one that gets its xylophones, peripatetics, and defenestrates right. Can we derive a
metric with the discriminating power of BLEURT that does not share its bias or expense and is as
interpretable as BLEU?

As it turns out, the metric may already exist and be in common use. Information extraction
and other areas concerned with classi�cation have long used both micro averaging, which treats
each token equally, and macro averaging, which instead treats each type equally, when evaluating.
The latter in particular is useful when seeking to avoid results dominated by overly frequent
types. In this chapter, we take a classi�cation-based approach to evaluating machine translation
by considering word type imbalance into account. We obtain an easy-to-calculate metric that
focuses on adequacy as much as BLEURT but does not have the expensive overhead, opacity, or
bias of model-based methods.
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Reference: You must be a doctor.
Hypothesis: must be a doctor.

He -0.735
Alexandra -0.888
Alexander -0.975
Joe -0.975
Sue -1.043
She -1.100

Reference: It is the greatest country in the world.
Hypothesis: is the greatest country in the world.

France -0.022
America -0.060
Russia -0.161
China -0.166
USA -0.168
India -0.211
Canada -0.309

Table 4.1: A demonstration of BLEURT’s internal biases; model-free metrics like BLEU would
consider each of the errors above to be equally wrong.

Our contributions are as follows: We consider MT as a classi�cation task, and thus admit
MacroF1 as a legitimate approach to evaluation (Section 4.1). We show that MacroF1 is competi-
tive with other popular methods at tracking human judgments in translation (Section 4.2.2). We
o�er an additional justi�cation of MacroF1 as a performance indicator on adequacy-focused down-
stream tasks such as cross-lingual information retrieval (Section 4.2.3). Finally, we demonstrate
that MacroF1 is just as good as the expensive BLEURT at discriminating between structurally
di�erent MT approaches in a way Bleu cannot, especially regarding the adequacy of generated
text (Section 4.3).

4.1 MT Evaluation: Micro and Macro Metrics

In section 3.1, we have provided a high-level view of NMT. Speci�cally, we view NMT as a multi-
class classi�er that operates on representations from an autoregressor. We may thus consider
classi�er-based evaluation metrics for MT.
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As per the notation and de�nitions in Section 2.2, consider a test corpus,) = {(G (8), ℎ(8), ~ (8)) |8 =
1, 2, 3...# } where G (8) , ℎ(8) , and ~ (8) are source, system hypothesis, and reference translation,
respectively. Let G = {G (8)∀8} and similar for ℎ and ~. Let +ℎ,+~,+ℎ∩~, and + be the vocabulary of
ℎ, the vocabulary of ~, +ℎ ∩+~ , and +ℎ ∪+~ , respectively. Following our de�nitions in Section 2.2),
we compute �V measure (�V ;2 ) for each unigram type 2 ∈ +ℎ∩~ :1

The macro-average consolidates individual performance by averaging by type, while the
micro-average averages by token:

MacroFV =
∑
2∈+ �V ;2

|+ |

MicroFV =
∑
2∈+ 5 A4@(2) × �V ;2∑

2 ′∈+ 5 (2′)

where 5 A4@(2) = Refs(2) + : for smoothing factor : .2 We scale MacroFV and MicroFV values to
percentile, similar to Bleu, for the sake of easier readability.

4.2 Justi�cation for MacroF1

In the following sections, we verify and justify the utility of MacroF1 while also o�ering a
comparison with popular alternatives such as MicroF1, Bleu, ChrF1, and BLEURT.3 We use
Kendall’s rank correlation coe�cient, g , to compute the association between metrics and human
judgments. Correlations with p-values smaller than U = 0.05 are considered to be statistically
signi�cant.

4.2.1 Data-to-Text: WebNLG

We use the 2017 WebNLG Challenge dataset (Gardent et al., 2017; Shimorina, 2018)4 to analyze
the di�erences between micro- and macro- averaging. WebNLG is a task of generating English
text for sets of triples extracted from DBPedia. Human annotations are available for a sample of
223 records each from nine NLG systems. The human judgments provided have three linguistic
aspects—�uency, grammar, and semantics5—which enable us to perform a �ne-grained analysis of
our metrics. We compute Kendall’s g between metrics and human judgments, which are reported
in Table 4.2.

As seen in Table 4.2, the metrics exhibit much variance in agreements with human judgments.
For instance, BLEURTmedian is the best indicator of �uency and grammar, however BLEURTmean

1We consider �V ;2 for 2 ∉ +ℎ∩~ to be 0.
2We use : = 1. When : →∞,MicroFV → MacroFV .
3Bleu and ChrF1 scores reported in this work are computed with SacreBleu; see the Appendix for details.

BLEURT scores are from the base model (Sellam et al., 2020). We consider two varieties of averaging to obtain a
corpus-level metric from the segment-level BLEURT: mean and median of segment-level scores per corpus.

4https://gitlab.com/webnlg/webnlg-human-evaluation
5Fluency and grammar, which are elicited with nearly identical directions (Gardent et al., 2017), are identically

correlated.
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Figure 4.1: MT metrics and their weights assigned to word types. Statistics are from WMT 2019
German-English NewsTest reference corpus. While MacroF1 treat each type equally, all others
treat each token equally.

is best on semantics. BLEURT, being a model-based measure that is directly trained on human
judgments, scores relatively higher than others. Considering the model-free metrics, ChrF1 does
well on semantics but poorly on �uency and grammar compared to Bleu. Not surprisingly, both
MicroF1 and MacroF1, which rely solely on unigrams, are poor indicators of �uency and grammar
compared to Bleu, however MacroF1 is clearly a better indicator of semantics than Bleu. The
discrepancy between MicroF1 and MacroF1 regarding their agreement with �uency, grammar,
and semantics is expected: micro-averaging pays more attention to function words (as they are
frequent types) that contribute to �uency and grammar whereas macro-averaging pays relatively
more attention to the content words that contribute to semantic adequacy.

The takeaway from this analysis is as follows: MacroF1 is a strong indicator of semantic
adequacy, however, it is a poor indicator of �uency. We recommend using either MacroF1 or
ChrF1 when semantic adequacy and not �uency is a desired goal.

4.2.2 Machine Translation: WMT Metrics

In this section, we verify how well the metrics agree with human judgments using Workshop on
Machine Translation (WMT) metrics task datasets for 2017–2019 (Bojar et al., 2017b; Ma et al.,
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Name Fluency & Grammar Semantics

Bleu ×.444 ×.500
ChrF1

×.278 .778
MacroF1

×.222 .722
MicroF1

×.333 .611
BLEURTmean ×.444 .833
BLEURTmedian .611 .667

Table 4.2: WebNLG data-to-text task: Kendall’s g between system-level MT metric scores and
human judgments. Fluency and grammar are correlated identically by all metrics. Values that are
not signi�cant at U = 0.05 are indicated by ×.

Year Pairs ★Bleu Bleu MacroF1 MicroF1 ChrF1

2019 18
Mean .751 .771 .821 .818 .841
Median .782 .752 .844 .844 .875
Wins 3 3 6 3 5

2018 14
Mean .858 .857 .875 .873 .902
Median .868 .868 .901 .879 .919
Wins 1 2 3 2 6

2017 13
Mean .752 .713 .714 .742 .804
Median .758 .733 .735 .728 .791
Wins 5 4 2 2 6

Table 4.3: WMT 2017–19 Metrics task: Mean and median Kendall’s g between MT metrics and
human judgments. Correlations that are not signi�cant at U = 0.05 are excluded from the
calculation of mean, and median, and wins. See Appendix Tables 4.4, 4.5, and 4.6 for full details.
★Bleu is pre-computed scores available in the metrics packages. In 2018 and 2019, both MacroF1
and MicroF1 outperform Bleu, MacroF1 outperforms MicroF1. ChrF1 has strongest mean and
median agreements across the years. Judging based on the number of wins, MacroF1 has steady
progress over the years, and outperforms others in 2019.

2018, 2019).6 We �rst compute scores from each MT metric, and then calculate the correlation g
with human judgments.

As there are many language pairs and translation directions in each year, we report only
the mean and median of g , and number of wins per metric for each year in Table 4.3. We have
excluded BLEURT from comparison in this section since the BLEURT models are �ne-tuned on

6http://www.statmt.org/wmt19/metrics-task.html
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the same datasets on which we are evaluating the other methods.7 ChrF1 has the strongest mean
and median agreement with human judgments across the years. In 2018 and 2019, both MacroF1
and MicroF1 mean and median agreements outperform Bleu whereas in 2017 Bleu was better
than MacroF1 and MicroF1.

As seen in Section 4.2.1, MacroF1 weighs towards semantics whereas MicroF1 and Bleu
weigh towards �uency and grammar. This indicates that recent MT systems are mostly �uent,
and adequacy is the key discriminating factor amongst them. Bleu served well in the early era of
statistical MT when �uency was a harder objective. Recent advancements in neural MT models
such as Transformers (Vaswani et al., 2017) produce �uent outputs, and have brought us to an era
where semantic adequacy is the focus.

Tables 4.4, 4.5, and 4.6 provide g between MT metrics and human judgments on WMT Metrics
task 2017–2019. ★Bleu is based on pre-computed scores in WMT metrics package, whereas Bleu is
based on our recalculation using SacreBleu. Values marked with ×are not signi�cant at U = 0.05,
and hence corresponding rows are excluded from the calculation of mean, median, and standard
deviation.

Since MacroF1 is the only metric that does not achieve statistical signi�cance in the WMT
2019 EN-ZH setting, we carefully inspected it. Human scores for this setting are obtained without
looking at the references by bilingual speakers (Ma et al., 2019), but the ZH references are found to
have a large number of bracketed EN phrases, especially proper nouns that are rare types. When
the text inside these brackets is not generated by an MT system, MacroF1 naturally penalizes
heavily due to the poor recall. Since other metrics assign lower importance to poor recall of such
rare types, they achieve relatively better correlation to human scores than MacroF1. However,
since the g values for EN-ZH are relatively lower than the other language pairs, we conclude
that poor correlation of MacroF1 in EN-ZH is due to poor quality references. Some settings did
not achieve statistical signi�cance due to a smaller sample set as there were fewer MT systems
submitted, e.g. 2017 CS-EN.

4.2.3 Downstream Task: Cross-Lingual Information Retrieval

In this section, we determine correlation between MT metrics and downstream cross-lingual
information retrieval (CLIR) tasks. CLIR is a kind of information retrieval (IR) task in which
documents in one language are retrieved given queries in another (Grefenstette, 2012). A practical
solution to CLIR is to translate source documents into the query language using an MT model, then
use a monolingual IR system to match queries with translated documents. Correlation between
MT and IR metrics is accomplished in the following steps:

1. Build a set of MT models and measure their performance using MT metrics.
2. Using each MT model in the set, translate all source documents to the target language, build

an IR model, and measure IR performance on translated documents.

7https://github.com/google-research/bleurt
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★Bleu Bleu MacroF1 MicroF1 ChrF1

DE-CS .855 .745 .964 .917 .982

DE-EN .571 .655 .723 .695 .742

DE-FR .782 .881 .927 .844 .915

EN-CS .709 .954 .927 .927 .908

EN-DE .540 .752 .741 .773 .824

EN-FI .879 .818 .879 .848 .923

EN-GU .709 .709 .600 .734 .709

EN-KK .491 .527 .685 .636 .661

EN-LT .879 .848 .970 .939 .881

EN-RU .870 .848 .939 .879 .930

FI-EN .788 .809 .909 .901 .875

FR-DE .822 .733 .733 .764 .815

GU-EN .782 .709 .855 .891 .945

KK-EN .891 .844 .796 .844 .881

LT-EN .818 .855 .844 .855 .833

RU-EN .692 .729 .714 .780 .757

ZH-EN .695 .695 .752 .676 .715

Median .782 .752 .844 .844 .875

Mean .751 .771 .821 .818 .841

SD .124 .101 .112 .093 .095

EN-ZH .606 .606
×.424 .595 .594

Wins 3 3 6 3 5

Table 4.4: WMT19 Metrics task: Kendall’s g
between metrics and human judgments.

★Bleu Bleu MacroF1 MicroF1 ChrF1

DE-EN .828 .845 .917 .883 .919

EN-DE .778 .750 .850 .783 .848

EN-ET .868 .868 .934 .906 .949

EN-FI .901 .848 .901 .879 .945

EN-RU .889 .889 .944 .889 .930

EN-ZH .736 .729 .685 .833 .827

ET-EN .884 .900 .884 .878 .904

FI-EN .944 .944 .889 .915 .957

RU-EN .786 .786 .929 .857 .869

ZH-EN .824 .872 .738 .780 .820

EN-CS 1.000 1.000 .949 1.000 .949

Median .868 .868 .901 .879 .919

Mean .858 .857 .875 .873 .902

SD .077 .080 .087 .062 .052

TR-EN ×.200 ×.738 ×.400 ×.316 ×.632

EN-TR ×.571 ×.400 .837 ×.571 .849

CS-EN ×.800 ×.800 ×.600 ×.800 ×.738

Wins 1 2 3 2 6

Table 4.5: WMT18 Metrics task: Kendall’s g
between metrics and human judgments.

3. For each MT metric, �nd the correlation between the set of MT scores and their correspond-
ing set of IR scores. The MT metric that has a stronger correlation with the IR metric(s) is
more useful than the ones with weaker correlations.

4. Repeat the above steps on many languages to verify the generalizability of �ndings.
An essential resource for this analysis is a dataset with human annotations for computing MT

and IR performances. We conduct experiments on two datasets: �rstly, on data from the 2020
workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS) (Zavorin
et al., 2020), and secondly, on data originally from Europarl, prepared by Lignos et al. (2019)
(Europarl).
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★Bleu Bleu MacroF1 MicroF1 ChrF1

DE-EN .564 .564 .734 .661 .744

EN-CS .758 .751 .767 .758 .878

EN-DE .714 .767 .562 .593 .720
EN-FI .667 .697 .769 .718 .782

EN-RU .556 .556 .778 .648 .669
EN-ZH .911 .911 .600 .854 .899
LV-EN .905 .714 .905 .905 .905

RU-EN .778 .611 .611 .722 .800

TR-EN .911 .778 .674 .733 .907
ZH-EN .758 .780 .736 .824 .732
Median .758 .733 .735 .728 .791
Mean .752 .713 .714 .742 .804
SD .132 .110 .103 .097 .088
FI-EN .867 .867

×.733 .867 .867

EN-TR .857 .714 ×.571 .643 .849
CS-EN ×1.000 ×1.000 ×.667 ×.667 ×.913
Wins 5 4 2 2 6

Table 4.6: WMT17 Metrics task: Kendall’s g between metrics and human judgments.

4.2.3.1 CLSSTS Datasets

CLSSTS datasets contain queries in English (EN), and documents in many source languages along
with their human translations, as well as query-document relevance judgments. We use three
source languages: Lithuanian (LT), Pashto (PS), and Bulgarian (BG). The performance of this
CLIR task is evaluated using two IR measures: Actual Query Weighted Value (AQWV) and Mean
Average Precision (MAP). AQWV8 is derived from Actual Term Weighted Value (ATWV) metric
(Wegmann et al., 2013). We use a single CLIR system (Boschee et al., 2019) with the same IR
settings for all MT models in the set, and measure Kendall’s g between MT and IR measures.
The results, in Table 4.7, show that MacroF1 is the strongest indicator of CLIR downstream task
performance in �ve out of six settings. AQWV and MAP have a similar trend in agreement to the
MT metrics. ChrF1 and BLEURT, which are strong contenders when generated text is directly
evaluated by humans, do not indicate CLIR task performance as well as MacroF1, as CLIR tasks

8https://www.nist.gov/system/�les/documents-/2017/10/26/aqwv_derivation.pdf
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Domain IR Score Bleu MacroF1 MicroF1 ChrF1 BLEURTmean BLEURTmedian

LT-EN

In
AQWV .429 ×.363 .508

×.385 .451 .420

MAP .495 .429 .575 .451 .473 .486

In+Ext
AQWV ×.345 .527 .491 .491 .491 .477

MAP ×.273 ×
.455

×.418 ×.418 ×.418 ×.404

PS-EN

In
AQWV .559 .653 .574 .581 .584 .581

MAP .493 .632 .487 .494 .558 .554

In+Ext
AQWV .589 .682 .593 .583 .581 .571

MAP .519 .637 .523 .482 .536 .526

BG-EN

In
AQWV ×.455 .550 .527 ×.382 ×.418 .418

MAP .491 .661 .564 .491 .527 .527

In+ext
AQWV ×.257 .500

×.330 ×.404 ×.367 ×.367

MAP ×.183 ×
.426

×.257 ×.330 ×.294 ×.294

Table 4.7: CLSSTS CLIR task: Kendall’s g between IR and MT metrics under study. The rows with
Domain=In are where MT and IR scores are computed on the same set of documents, whereas
Domain=In+Ext are where IR scores are computed on a larger set of documents that is a superset
of segments on which MT scores are computed. Bold values are the best correlations achieved in
a row-wise setting; values with × are not signi�cant at U = 0.05.

require faithful meaning equivalence across the language boundary, and human translators can
mistake �uent output for proper translations (Callison-Burch et al., 2007).

4.2.3.2 Europarl Datasets

Bleu MacroF1 MicroF1 ChrF1 BLEURTmean BLEURTmedian

CS-EN .850 .867 .850 .850 .900 .867
DE-EN .900 .900 .900 .912 .917 .900

Table 4.8: Europarl CLIR task: Kendall’s g between MT metrics and RBO. All correlations are
signi�cant at U = 0.05.

We perform a similar analysis to Section 4.2.3.1 but on another cross-lingual task set up by
Lignos et al. (2019) for Czech→ English (CS-EN) and German→ English (DE-EN), using publicly
available data from the Europarl v7 corpus (Koehn, 2005). This task di�ers from the CLSSTS task
(Section 4.2.3.1) in several ways. Firstly, MT metrics are computed on test sets from the news
domain, whereas IR metrics are from the Europarl domain. The domains are thus intentionally
mismatched between MT and IR tests. Secondly, since there are no queries speci�cally created for
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the Europarl domain, GOV2 TREC topics 701–850 are used as domain-relevant English queries.
And lastly, since there are no query-document relevance human judgments for the chosen query
and document sets, the documents retrieved by BM25 (Jones et al., 2000) on the English set for each
query are treated as relevant documents for computing the performance of the CS-EN and DE-EN
CLIR setup. As a result, IR metrics that rely on boolean query-document relevance judgments as
ground truth are less informative, and we use Rank-Based Overlap (RBO; ? = 0.98) (Webber et al.,
2010) as our IR metric.

We perform our analysis on the same experiments as Lignos et al. (2019).9 NMT models for
CS-EN and DE-EN translation are trained using a convolutional NMT architecture (Gehring et al.,
2017) implemented in the FAIRSeq (Ott et al., 2019) toolkit. For each of CS-EN and DE-EN, a total
of 16 NMT models that are based on di�erent quantities of training data and BPE hyperparameter
values are used. The results in Table 4.8 show that BLEURT has the highest correlation in both
cases. Apart from the trained BLEURTmedian metric, MacroF1 scores higher than the others
on CS-EN, and is competitive on CS-EN. MacroF1 is not the metric with the highest IR task
correlation in this setting, unlike in Section 4.2.3.1, however it is competitive with Bleu and ChrF1,
and thus a safe choice as a downstream task performance indicator.

4.3 SpottingDi�erencesBetween Supervised andUnsupervised

NMT

Unsupervised neural machine translation (UNMT) systems trained on massive monolingual data
without parallel corpora have made signi�cant progress recently (Artetxe et al., 2018; Lample
et al., 2018a,b; Conneau and Lample, 2019a; Song et al., 2019; Liu et al., 2020). In some cases,
UNMT yields a Bleu score that is comparable with strong10 supervised neural machine translation
(SNMT) systems. In this section we leverage MacroF1 to investigate di�erences in the translations
from UNMT and SNMT systems that have similar Bleu.

We compare UNMT and SNMT for English↔ German (EN-DE, DE-EN), English↔ French
(EN-FR, FR-EN), and English↔ Romanian (EN-RO, RO-EN). All our UNMT models are based on
XLM (Conneau and Lample, 2019a), pretrained by Yang (2020). We choose SNMT models with
similar Bleu on common test sets by either selecting from systems submitted to previous WMT
News Translation shared tasks (Bojar et al., 2014, 2016) or by building such systems.11 Speci�c
SNMT models chosen are in Table 4.9. The UNMT models follow XLM’s standard architecture and
are trained with 5 million monolingual sentences for each language using a vocabulary size of
60,000. We train SNMT models for EN↔DE and select models with the most similar (or a slightly
lower) BLEU as their UNMT counterparts on newstest2019. The DE-EN model selected is trained
with 1 million sentences of parallel data and a vocabulary size of 64,000, and the EN-DE model

9https://github.com/ConstantineLignos/mt-clir-emnlp-2019
10though not, generally, the strongest
11We were unable to �nd EN-DE and DE-EN systems with comparable Bleu in WMT submissions so we built

standard Transformer-base (Vaswani et al., 2017) models for these using appropriate quantity of training data to reach
the desired Bleu performance. We report EN-RO results with diacritic removed to match the output of UNMT.
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selected is trained with 250,000 sentences of parallel data and a vocabulary size of 48,000. For
EN↔FR and EN↔RO, we select SNMT models from submitted systems to WMT shared tasks that
have similar or slightly lower BLEU scores to corresponding UNMT models, based on NewsTest2014
for EN↔FR and NewsTest2016 for EN↔RO.

Translation SNMT UNMT SNMT Name

DE-EN NewsTest2019 32.7 33.9 Our Transformer

EN-DE NewsTest2019 24.0 24.0 Our Transformer

FR-EN NewsTest2014 31.1 31.2 OnlineA.0
EN-FR NewsTest2014 25.6 27.1 PROMT-Rule-based.3083
RO-EN NewsTest2016 30.8 29.6 Online-A.0
EN-RO NewsTest2016 31.2 31.0 uedin-pbmt.4362

Table 4.9: We select SNMT systems such that their Bleu scores are approximately the same as the
available pretrained UNMT models. Our Transformer models are the ones we have trained, which
are described in Chapter 3.

Bleu MacroF1 MicroF1 ChrF1 BLEURTmean BLEURTmedian

SN UN Δ SN UN Δ SN UN Δ SN UN Δ SN UN Δ SN UN Δ

DE-EN 32.7 33.9 -1.2 38.5 33.6 4.9 58.7 57.9 0.8 59.9 58.0 1.9 .211 -.026 .24 .285 .067 .22

EN-DE 24.0 24.0 0.0 24.0 23.5 0.5 47.7 48.1 -0.4 53.3 52.0 1.3 -.134 -.204 .07 -.112 -.197 .09

FR-EN 31.1 31.2 -0.1 41.6 33.6 8.0 60.5 58.3 2.2 59.1 57.3 1.8 .182 .066 .17 .243 .154 .09

EN-FR 25.6 27.1 -1.5 31.9 27.3 4.6 53.0 52.3 0.7 56.0 57.7 -1.7 .104 .042 .06 .096 .063 .03

RO-EN 30.8 29.6 1.2 40.3 33.0 7.3 59.8 56.5 3.3 58.0 54.7 3.3 .004 -.058 .06 .045 -.004 .04

EN-RO 31.2 31.0 0.2 34.6 31.0 3.6 55.4 53.4 2.0 59.3 56.7 2.6 .030 -.046 .08 .027 -.038 .07

Table 4.10: For each language direction, UNMT (UN) models have similar Bleu to SNMT (SN)
models, and ChrF1 and MicroF1 have small di�erences. However, MacroF1 scores di�er signi�-
cantly, consistently in favor of SNMT. Both corpus-level interpretations of BLEURT support the
trend re�ected by MacroF1, but the value di�erences are di�cult to interpret. Credits: Weiqiu
You.

Table 4.10 shows performance for these three language pairs using a variety of metrics. Despite
comparable scores in Bleu and only minor di�erences in MicroF1 and ChrF1, SNMT models
have consistently higher MacroF1 and BLEURT than the UNMT models for all six translation
directions.

Figure 4.2, which is a visualization of MacroF1 for SNMT and UNMT models, shows that
UNMT is generally better than SNMT on frequent types, however, SNMT outperforms UNMT on
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the rest leading to a crossover point in MacroF1 curves. Since MacroF1 assigns relatively higher
weights to infrequent types than in Bleu, SNMT gains higher MacroF1 than UNMT while both
have approximately the same Bleu, as reported in Table 4.10.
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Figure 4.2: SNMT vs UNMT MacroF1 on the most frequent 500 types. UNMT outperforms SNMT
on frequent types that are weighed heavily by Bleu however, SNMT is generally better than
UNMT on rare types; hence, SNMT has a higher MacroF1. Only the most frequent 500 types are
visualized in this �gure.
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4.4 Metrics Reproducibility

Bleu scores reported in this work are computed with the SacreBleu library and have signature
BLEU+case.mixed+lang.<xx>-<yy>+numrefs.1+smooth.exp+tok.<TOK>+version.1.4.13, where <TOK>
is zh for Chinese, and 13a for all other languages. MacroF1 and MicroF1 use the same tokenizer as
Bleu. ChrF1 is also obtained using SacreBleu and has signature chrF1+lang.<xx>-<yy>+numchars.6
+space.false +version.1.4.13. BLUERT scores are from the base model of Sellam et al. (2020),
which is �ne-tuned on WMT Metrics ratings data from 2015-2018. The BLEURT model is retrieved
from https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip.

MacroF1 and MicroF1 are computed using our fork of SacreBleu as:
sacrebleu $REF -m macrof microf < $HYP. Our modi�cation to SacreBLEU is available at
https://github.com/isi-nlp/sacrebleu/tree/macroavg-naacl21; alternatively, it can be
installed as pip install sacrebleu-macrof12

4.5 Conclusion

We have evaluated NLG in general and MT speci�cally as a multi-class classi�er, and illustrated
the di�erences between micro- and macro- averages using MicroF1 and MacroF1 as examples
(Section 4.1). MacroF1 captures semantic adequacy better than MicroF1 (Section 4.2.1). Bleu,
being a micro-averaged measure, served well in an era when generating �uent text was at least as
di�cult as generating adequate text. Since we are now in an era in which �uency is taken for
granted and semantic adequacy is a key discriminating factor, macro-averaged measures such as
MacroF1 are better at judging the generation quality of MT models (Section 4.2.2). We have found
that another popular metric, ChrF1, also performs well on direct assessment, however, being
an implicitly micro-averaged measure, it does not perform as well as MacroF1 on downstream
CLIR tasks (Section 4.2.3.1). Unlike BLEURT, which is also adequacy-oriented, MacroF1 is directly
interpretable, does not require retuning on expensive human evaluations when changing language
or domain, and does not appear to have uncontrollable biases resulting from data e�ects. It is
both easy to understand and to calculate, and is inspectable, enabling �ne-grained analysis at
the level of individual word types. These attributes make it a useful metric for understanding
and addressing the �aws of current models. For instance, we have used MacroF1 to compare
supervised and unsupervised NMT models at the same operating point measured in Bleu, and
determined that supervised models have better adequacy than the current unsupervised models
(Section 4.3).

Macro-average is a useful technique for addressing the importance of the long tail of language,
and MacroF1 is our �rst step in that direction; we anticipate the development of more advanced
macro-averaged metrics that take advantage of higher-order and character n-grams in the future.

12https://pypi.org/project/sacrebleu-macrof/2.0.1/
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Ethical Consideration

Since many ML models including NMT are themselves opaque and known to possess data-induced
biases (Prates et al., 2019), using opaque and biased evaluation metrics in concurrence makes it
even harder to discover and address the �aws in modeling. Hence, we have raised concerns about
the opaque nature of the current model-based evaluation metrics, and demonstrated examples
displaying unwelcome biases in evaluation. We advocate the use of the MacroF1 metric, as it
is easily interpretable and o�ers the explanation of score as a composition of individual type
performances. In addition, MacroF1 treats all types equally, and has no parameters that are directly
or indirectly estimated from data sets. Unlike MacroF1, MicroF1 and other implicitly or explicitly
micro-averaged metrics assign lower importance to rare concepts and their associated rare types.
The use of micro-averaged metrics in real world evaluation could lead to marginalization of rare
types.

Failure Modes: The proposed MacroF1 metric is not the best measure of �uency of text. Hence,
we suggest caution while using MacroF1 to draw �uency related decisions. MacroF1 is inherently
concerned with words, and assumes the output language is easily segmentable into word tokens.
Using MacroF1 to evaluate translation into alphabetical languages such as Thai, Lao, and Khmer,
that do not use white space to segment words, requires an e�ective tokenizer. Absent this the
method may be ine�ective; we have not tested it on languages beyond those listed in Section 4.2.2.

Reproducibility: Our implementation of MacroF1 and MicroF1 has the same user experience
as Bleu as implemented in SacreBleu; signatures are provided in Section 4.4. In addition, our
implementation is computationally e�cient, and has the same (minimal) software and hardware
requirements as Bleu. All data for MT and NLG human correlation studies is publicly available and
documented. Data for reproducing the IR experiments in Section 4.2.3.2 is also publicly available
and documented. The data for reproducing the IR experiments in Section 4.2.3.1 is only available
to participants in the CLSSTS shared task.

Climate Impact: Our proposed metrics are on par with Bleu and such model-free methods,
which consume signi�cantly less energy than most model-based evaluation metrics.
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Chapter 5

Rare Linguistic Styles: Robustness to Language Alternation

NMT has made signi�cant progress, from supporting only a pair of languages per model to now
simultaneously supporting up to hundreds of languages (Johnson et al., 2017; Zhang et al., 2020;
Tiedemann, 2020; Gowda et al., 2021). Multilingual NMT models have been deployed in production
systems and are actively used to translate across languages in day-to-day settings (Wu et al.,
2016; Turovsky, 2017; Mohan and Skotdal, 2021). A great many metrics for evaluation of machine
translation have been proposed (Papineni et al., 2002; Doddington, 2002; Banerjee and Lavie, 2005;
Snover et al., 2006; Popović, 2015; Lo, 2019), including MacroF1 in Chapter 4, however nearly
all approaches consider translation in the context of a single sentence. Even the approaches that
generalize to support translation of multiple languages (Zhang et al., 2020; Tiedemann, 2020;
Gowda et al., 2021) continue to use the single-sentence paradigm. In reality, however, multilingual
environments involve switching between languages and scripts. For instance, the European
Parliament1 and Parliament of India2 hold debates in multilingual environments where speakers
seamlessly switch languages.

Language Alternation, also known as code switching (CS), is a linguistic phenomenon in which
the speaker alternate between two or more languages in the context of a single conversation
(Myers-Scotton and Ury, 1977). CS is further classi�ed into two major categories: (1) intersentential,
where switching happens at sentence or clause boundaries, and (2) intra-sentential, where the
switching happens within a sentence or clause. Myers-Scotton (1989) argues that distinction
between inter- and intra-sentential switching is poorly motivated, and both can occur as part of the
same conversation turn. An example CS between two Indian languages having both inter- and
intra-sentential switching is given in Figure 5.1. CS has been studied extensively in linguistics
communities (Nilep, 2006); however, the e�orts in MT community is sparse (Gupta et al., 2021),
which we attempt to address in this chapter.

In this chapter, we show that, multilingual NMT models, as commonly built, are not robust to
multi-sentence translation, especially when language switching is involved. The contributions
of this chapter are outlined as follows: Firstly, inspired by CheckList (Ribeiro et al., 2020), a
few simple but e�ective checks for improving the test coverage in multilingual NMT evaluation

1https://www.europarl.europa.eu/doceo/document/CRE-9-2021-11-10_EN.pdf
2https://web.archive.org/web/20220105061052/http://loksabhadocs.nic.in/debatestextmk/17/

VII/01.12.2021.pdf
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Original: “bandaaginda bari bageeche ke bahar-e iddivi. kahaani ke andhar bandu bidona.
kaam bolo saab."
Kannada: “bandaaginda bari vishayada horagadene iddivi. katheya olagade bandu bidona.
kelasa heli saar."

English Translation: “From the time I’ve reached here, we’ve stayed outside of the topic. Let’s
come into the matter. Tell me the work, sir."

Figure 5.1: Demonstration of language switching between Kannada and Hindi. The original
dialogue is taken from an Indian movie. Such seamless language switching is common among
multilingual speakers.

are described (Section 5.1). Secondly, we explore training data augmentation techniques such as
concatenation and noise addition in the context of multilingual NMT (Section 5.2). Third, using
a many-to-one multilingual translation task setup (Section 5.3), we investigate the relationship
between training data augmentation methods and their impact on multilingual test cases. Fourth,
we conduct a glass-box analysis of cross-attention in the Transformer architecture and show
visually as well as quantitatively that the models trained with concatenated training sentences
learn a more sharply focused attention mechanism than others. Finally, we examine how our
data augmentation strategies generalize to multi-sentence translation for a variable number
of sentences, and determine that two-sentence concatenation in training is su�cient to model
many-sentence concatenation in inference (Section 5.4.2).

5.1 Multilingual TranslationEvaluation: AdditionalChecks

Inspired by the behavior testing paradigm in software engineering, Ribeiro et al. (2020) propose
a CheckList to test beyond the accuracy of NLP models. The central idea of CheckList is
that given any held-out set, one can improve the coverage of testing by modifying the set in
a systematic way designed to test linguistic capabilities of natural language processing (NLP)
modeling. Some of the modi�cations CheckList employs are: synonym replacement, named
entity replacement, negation, etc. Although these modi�cations are straightforward in tasks
such as sentiment classi�cation, such modi�cations on parallel sentences while maintaining the
consistency on both sides is not trivial. Nevertheless, the principles of behavior testing and their
application to improve test coverage in machine translation are intriguing. We, therefore, explore
suitable checks in the context of multilingual NMT.

De�nitions: Translation tasks are categorized as bilingual if a single source language is trans-
lated to a single target language, and multilingual if two or more languages are on either of the
source or target side. Multilingual tasks are further sub-classi�ed based on the number of lan-
guages and the side they on are as many-to-one, one-to-many, and many-to-many. In this chapter,
we focus on many-to-one (i.e., many source languages, one target) multilingual translation.
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Notation: For simplicity, consider a many-to-one model that translates sentences from  

source languages, {!: |: = 1, 2, ... }, to a target language, ) . Let G (!: )
8

be a sentence in the source
language !: , and let its translation in the target language be ~ () )

8
; where unambiguous, we omit

the superscripts.
We propose the following checks to be used for multilingual NMT:

C-SL: Concatenate consecutive sentences in the same language. It is not always trivial to de-
termine sentence segmentation in continuous language. This check thus tests if the model
is invariant to a missed segmentation. This check is possible i� held-out set sentence order
preserves the coherency of the original document. Formally,

G
(!: )
8
+ G (!: )

8+1 → ~8 + ~8+1

In practice, we use a space character to join sentences, indicated by the concatenation operator
‘+’.3

C-TL: Consecutive sentences in the source and target languages. This check tests if the MT
system can preserve phrases that are already in the target language, and if the MT system can
translate in the presence of code and language switching settings. For completeness, we can test
both source-to-target and target-to-source language switching, as follows:

G
(!: )
8
+ ~8+1 → ~8 + ~8+1

~8 + G (!: )8+1 → ~8 + ~8+1

Similar to C-SL, this check also requires the held-out set sentence order to preserve the coherency
of the original document.

C-XL: This check tests if a multilingual MT system is agnostic to language switching. This check
is created by concatenating consecutive sentences across source languages. This is possible
i� the held-out sets are multi-parallel across languages, and, similar to the previous two, each
preserves the coherency of the original documents. Given two languages !: and !< , we obtain a
test sentence as follows:

G
(!: )
8
+ G (!<)

8+1 → ~8 + ~8+1

R-XL: This check tests if a multilingual MT system can function in light of a topic switch among
its supported source languages. For any two languages !: and !< and random positions 8 and 9
in their original corpus, we obtain a test segment by concatenating them as:

G
(!: )
8
+ G (!<)

9
→ ~8 + ~ 9

This method makes the fewest assumptions about the nature of held-out datasets, i.e., unlike
previous methods, neither multi-parallelism nor coherency in sentence order is necessary.

3We focus on orthographies that use space as a word-breaker. In orthographies without a word-breaker, joining
may be performed without any glue character.
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5.2 Improving Robustness via Data AugmentationMethods

In the previous section, we described several ways of improving test coverage for multilingual
translation models. In this section, we explore training data augmentation techniques to improve
robustness to language switching settings.

5.2.1 Concatenation

Concatenation of training sentences has been proven to be a useful data augmentation technique;
Nguyen et al. (2021) investigate key factors behind the usefulness of training segment concate-
nations in bilingual settings. Their experiments reveal that concatenating random sentences
performs as well as consecutive sentence concatenation, which suggests that discourse coherence
is unlikely the driving factor behind the gains. They attribute the gains to three factors: context
diversity, length diversity, and position shifting.

In this chapter, we investigate training data concatenation under multilingual settings, hy-
pothesizing that concatenation helps achieve the robustness checks that are described in the prior
section. Our training concatenation approaches are similar to our check sets, with the notable
exception that we do not consider consecutive sentence training speci�cally, both because of
Nguyen et al. (2021)’s �nding and because training data gathering techniques can often restrict
the availability of consecutive data (Bañón et al., 2020). We investigate the following sub-settings
for concatenations:
CatSL: Concatenate a pair of source sentences in the same language, using space whenever

appropriate (e.g. languages with space separated tokens).

G
(!: )
8
+ G (!: )

9
→ ~8 + ~ 9

CatXL: Concatenate a pair of source sentences, without constraint on language.

G
(!: )
8
+ G (!<)

9
→ ~8 + ~ 9

CatRepeat: The same sentence is repeated and then concatenated. Although this seems uninter-
esting, it serves a key role in ruling out gains possibly due to data repetition and modi�cation
of sentence lengths.

G
(!: )
8
+ G (!: )

8
→ ~8 + ~8

5.2.2 Adding Noise

We hypothesize that introducing noise during training might help achieve robustness, and investi-
gate two approaches that rely on noise addition:
DenoiseTgt: Form the source side of a target segment by adding noise to it. Formally,

=>8B4 (~; A ) → ~
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where, hyperparameter A controls the noise ratio. Denoising is an important technique in
unsupervised NMT (Artetxe et al., 2018; Lample et al., 2018a).

NoisySrc: Add noise to the source side of a translation pair. Formally,

=>8B4 (G ; A ) → ~

This resembles back-translation (Sennrich et al., 2016a) where augmented data is formed by
pairing noisy source sentences with clean target sentences.
The function =>8B4 (...; A ) is implemented as follows: (i) A% of random tokens are dropped,

(ii) A% of random tokens are replaced with random types uniformly sampled from vocabulary,
and (iii) A% of random tokens’ positions are displaced within a sequence. We use A = 10% in the
experiments discussed in this chapter.

Language In-domain All-data

Bengali (BN) 23.3k/0.4M/0.4M 1.3M/19.5M/21.3M
Gujarati (GU) 41.6k/0.7M/0.8M 0.5M/07.2M/09.5M
Hindi (HI) 50.3k/1.1M/1.0M 3.1M/54.7M/51.8M
Kannada (KN) 28.9k/0.4M/0.6M 0.4M/04.6M/08.7M
Malayalam(ML) 26.9k/0.3M/0.5M 1.1M/11.6M/19.0M
Marathi (MR) 29.0k/0.4M/0.5M 0.6M/09.2M/13.1M
Oriya (OR) 32.0k/0.5M/0.6M 0.3M/04.4M/05.1M
Punjabi (PA) 28.3k/0.6M/0.5M 0.5M/10.1M/10.9M
Tamil (TA) 32.6k/0.4M/0.6M 1.4M/16.0M/27.0M
Telugu (TE) 33.4k/0.5M/0.6M 0.5M/05.7M/09.1M
All 326k/5.3M/6.1M 9.6M/143M/175M

Table 5.1: Training dataset statistics: segments / source / target tokens, before tokenization.

Name Dev Test

Orig 10k/140.5k/163.2k 23.9k/331.1k/385.1k
C-SL 10k/281.0k/326.4k 23.9k/662.1k/770.1k
C-TL 10k/303.7k/326.4k 23.9k/716.1k/770.1k
C-XL 10k/283.9k/326.4k 23.9k/670.7k/770.1k
R-XL 10k/216.0k/251.2k 23.9k/514.5k/600.5k

Table 5.2: Development and test set statistics: segments / source / target tokens, before tokenization.
The row named ‘Orig’ is the union of all ten individual languages’ datasets, and the rest are created
as per de�nitions in Section 5.1. Dev-Orig set is used for validation and early stopping in all our
multilingual models.
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C-SL

BN-1 + 
BN-2

আগামী ২০২২ সােলর মেধƟ এই কাজ সɑূণŪ করার লǘƟমাƯা িʆর হেয়েছ। Ƶধানমȫী বেলন, সরকার সুিনিদŪɳ 

লǘƟমাƯা এবং সময়সীমার মেধƟিবিভȵ ধরেনর Ƶকɤ ˚পায়েণর কাজ কের যােǱ।
EN-1 + 

EN-2
He said the aim is to complete this task by 2022. The Prime Minister said that the Government is 
working on various schemes with clear targets and timelines.

C-XL

BN-1 + 
GU-2

আগামী ২০২২ সােলর মেধƟ এই কাজ সɑূণŪ করার লǘƟমাƯা িʆর হেয়েছ। ̆ધાનમં́ ીએ જણાƥȻુ ંક° સરકાર 

ƨપƧટ લǛયો અને સમયɅચૂકતા સાથે અનેક યોજનાઓ પર કામ કર� રહ� છે.

EN-1 + 
EN-2

He said the aim is to complete this task by 2022. The Prime Minister said that the Government is 
working on various schemes with clear targets and timelines.

C-TL

BN-1 + 
EN-2

আগামী ২০২২ সােলর মেধƟ এই কাজ সɑূণŪ করার লǘƟমাƯা িʆর হেয়েছ। The Prime Minister said that the 
Government is working on various schemes with clear targets and timelines.

EN-1 + 
EN-2

He said the aim is to complete this task by 2022. The Prime Minister said that the Government is 
working on various schemes with clear targets and timelines.

R-XL

KN-m + 
HI-n

£ಾನು ±ಾವ�ಜĪಕರನುÇ ಉ¡ೆÅೕļľ §ಾಷಣ ¨ಾಡĹ¡ೆÅೕ£ೆ. राÏयांना सुĤशासनाÍया आधारावर मानांकन 

देÖयात येत.े

EN-m + 
EN-n I will also address a public meeting. States are being rated on parameters of Good Governance.

Table 5.3: Concatenated sentence examples from the development set. Bengali (BN), Gujarati (GU),
Kannada (KN), and Hindi (HI) are chosen for illustrations; similar augmentations are performed
for all other languages in the corpus. Indices 1 and 2 indicate consecutive positions, and< and =
indicate random positions.

5.3 Setup

5.3.1 Dataset

We use publicly available datasets from The Workshop on Asian Translation 2021 (WAT21)’s Mul-
tiIndicMT (Nakazawa et al., 2021)4 shared task. This task involves translation between English(EN)
and 10 Indic Languages, namely: Bengali(BN), Gujarati(GU), Hindi(HI), Kannada(KN), Malay-
alam(ML), Marathi(MR), Oriya(OR), Punjabi(PA), Tamil(TA) and Telugu(TE). The development
and held-out test sets are multi-parallel and contain 1,000 and 2,390 sentences, respectively. The
training set contains a small portion of data from the same domain as the held-out sets, as well as
additional datasets from other domains. All the training data statistics are given in Table 5.1. We
focus on the Indic )English (many-to-one) translation direction in this chapter.

Following the de�nitions in Section 5.1, we create C-SL, C-TL, C-XL, and R-XL versions of
development and test sets; statistics are given in Table 5.2. An example demonstrating the nuances
in all these four methods is shown in Table 5.3. Following the de�nitions in Section 5.2, we create
CatSL, CatXL, CatRpeat, DenoiseTgt, and NoisySrc augmented training segments. For each of
these training corpus augmentation methods, we restrict the total augmented sentences to be
roughly the same number of segments as the original corpus, i.e., 326k and 9.6M segments in the
in-domain and the all-data setup, respectively.

4http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/
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5.3.2 Model and Training Process

We use a Transformer base model (Vaswani et al., 2017), similar to the one used in Chapter 3,
having 512 hidden dimensions, 6 encoder and decoder layers, 8 attention heads, and intermediate
feedforward layers of 2048 dimensions. We use our PyTorch based NMT toolkit (Section 6.1.3). As
described in Chapter 3, tuning the vocabulary size and batch size are important to achieve compet-
itive performance. We use byte-pair-encoding (BPE) (Sennrich et al., 2016b), with vocabulary size
adjusted as per our �ndings in Chapter 3. Since the source side has many languages and the target
side has only a single language, we use a larger source vocabulary than that of the target. The
source side vocabulary contains BPE types from all 11 languages (i.e., ten source languages and
English), whereas to improve the e�ciency in the decoder’s softmax layer, the target vocabulary
is restricted to contain English only. Our in-domain limited-data setup learns BPE vocabularies of
30.4k and 4.8k types for source and target languages. Similarly, the all-data setup learns 230.4k
and 63.4k types. The training batch size used for all our multilingual models is 10k tokens for the
in-domain limited-data setup, and 25k tokens for the larger all-data setup. The batch size for the
baseline bilingual models is adjusted as per data sizes using ‘a thousand per million tokens’ rule of
thumb that we have come to devise with a maximum of 25k tokens. The median sequence lengths
in training after subword segmentation but before sentence concatenation are 15 on the Indic side
and 17 on the English side. We model sequence lengths up to 512 time steps during training. We
use the same learning rate schedule as Vaswani et al. (2017). We train our models until a maximum
of 200k optimizer steps, and use early stopping with patience of 10 validations. Validations are
performed after every 1000 optimizer steps. All our models are trained using one Nvidia A40 GPU
per setting. The smaller in-domain setup takes less than 24 hours per run, whereas the larger
all-data setup takes at most 48 hours per run (or less when early stopping criteria are reached).
We run each experiment two times and report the average. During inference, we average the last
5 checkpoints and use a beam decoder of size 4 and length penalty of U = 0.6 (Vaswani et al., 2017;
Wu et al., 2016).

Dev Test BN GU HI KN ML MR OR PA TA TE
WAT21 biling indomain ‡ 18.6 11.3 26.2 28.2 20.3 13.6 15.1 16.4 23.7 16.1 14.7
Biling; indomain ‡ 24.1 21.6 13.2 29.3 32.9 22.7 17.9 16.9 16.4 27.4 18.1 21.0
Biling; indomain 23.9 21.5 13.1 29.2 32.6 22.5 17.7 16.8 16.4 27.3 18.0 20.9
Many-to-one; indomain 26.5 22.7 18.7 25.7 27.8 23.1 21.2 20.8 21.1 25.8 20.6 22.4
Many-to-one; all data 35.0 32.4 26.2 36.8 40.1 31.7 30.0 29.8 30.5 38.8 29.1 30.8

Table 5.4: Indic )English BLEU scores. Rows indicated by ‡ match the evaluation settings used by
WAT21 shared task (i.e., tokenized BLEU). The rows without ‡ are detokenized BLEU obtained
from SacreBLEU (Post, 2018). Dev and Test are average across 10 languages.
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Dev Test

ID In-domain Avg C-TL C-SL C-XL R-XL Avg C-TL C-SL C-XL R-XL
#I1 Baseline (B) 26.5 10.8 17.0 16.9 15.9 22.7 9.4 14.9 14.7 13.6
#I2 B+CatRepeat 25.3 9.9 14.5 14.7 13.3 21.6 8.6 13 13 11.4
#I3 B+CatXL 26.2 12.6 26.1 25.9 26.5 22.6 11.1 22.7 22.5 22.3
#I4 B+CatSL 26.1 13.2 26.1 25.9 26.5 22.6 11.4 22.9 22.6 22.3
#I5 B+NoisySrc 25.2 10.5 16.2 16.0 15.2 21.2 9.1 14.3 14.1 12.9
#I6 B+DenoiseTgt 26.7 40.4 17.9 17.7 16.6 23.2 39.7 15.7 15.4 14.1
#I7 B+CatXL+DenoiseTgt 26.1 55.2 26.3 26.0 26.4 22.6 53.4 23.0 22.6 22.4

Table 5.5: Indic )English BLEU scores for models trained on in-domain training data only. The
best scores are shown in bold.

Dev Test

ID All-data Avg C-TL C-SL C-XL R-XL Avg C-TL C-SL C-XL R-XL
#A1 Baseline (B) 35.0 43.1 30.0 29.5 28.2 32.4 42.2 27.8 27.3 26.1
#A2 B+CatRepeat 34.5 43.7 30.3 29.9 28.8 32.0 42.9 28.0 27.6 26.3
#A3 B+CatXL 34.1 53.3 31.9 33.7 34.4 31.6 52.4 29.7 31.0 31.2

#A4 B+CatSL 33.6 54.0 32.5 32.2 34.3 31.3 53.3 30.4 29.9 31.1
#A5 B+NoisySrc 34.9 42.1 29.8 29.2 27.8 32.3 41.7 27.6 27.1 25.8
#A6 B+DenoiseTgt 33.3 60.0 28.9 28.4 27.3 31.3 59.4 27.1 26.5 25.4
#A7 B+CatXL+DenoiseTgt 33.3 65.8 31.1 33.0 33.6 31.0 64.7 28.9 30.4 30.3

Table 5.6: Indic )English BLEU scores for models trained on all data. Abbreviations: Avg: average
across ten languages, C-: consecutive sentences, R-: random sentences, TL: target-language (i.e,
English), SL: same-language, XL: cross-language. The best scores are shown in bold font.

5.4 Results and Analysis

First, to test our setup with its various hyperparameters such as vocabulary and batch size, we
train bilingual models using in-domain data, similar to WAT21 organizer baselines. As shown in
Table 5.4, our baselines achieve competitive BLEU scores (Papineni et al., 2002).5 Next, we train
multilingual many-to-one models for both in-domain and all data.

Table 5.5 presents our results from a limited quantity in-domain dataset. The baseline model
(#I1) has strong performance on individual sentences, but degrades on held-out sets involving
missed sentence segmentation and language switching. Experiments with concatenated data,

5WAT21 baseline scores are obtained from http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/, which re-
ports BLEU using an external tokenizer script (moses-tokenizer.perl). Apart from the row tagged ‡ in Table 5.4,
which is intended to provide direct comparison to baselines, all other BLEU scores are obtained using SacreBLEU
with signature: BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.13.
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Dev Test

ID C-TL C-SL C-XL R-XL C-TL C-SL C-XL R-XL
#A1 Baseline (B) 14.3 10.4 10.3 10.1 14.3 10.6 10.5 10.3
#A2 B+CatRepeat 12.3 8.9 8.9 8.6 12.5 9.0 9.0 8.7
#A3 B+CatXL 5.8 7.2 4.3 4.3 5.8 7.2 4.4 4.3
#A4 B+CatSL 5.3 6.2 6.1 5.2 5.4 6.2 6.2 5.2
#A5 B+NoisySrc 17.4 16.1 16.1 15.8 17.5 16.2 16.2 15.9
#A6 B+DenoiseTgt 7.9 8.3 8.4 8.0 8.1 8.5 8.5 8.1
#A7 B+CatXL+DenoiseTgt 4.3 6.8 3.9 4.1 4.4 7.0 4.0 4.1

Table 5.7: Cross-attention bleed rate (lower is better); all numbers have been scaled from [0, 1]
to [0, 100] range for easier interpretation. Models trained on concatenated sentences have lower
attention bleed rate. Denoising is better than baseline, but not as much as concatenation. The
lowest bleed rate is achieved by using both concatenation and denoising methods. The best scores
are shown in bold font.

namely CatXL (#I3) and CatSL (#I4), while they appear to make no improvements on regular held-
out sets, make a signi�cant improvement in BLEU scores on C-SL, C-XL, and R-XL. Furthermore,
both CatSL and CatXL show a similar trend. While they also make a small gain on the C-TL
setting, DenoiseTgt method is clearly an out-performer on C-TL. The model that includes both
concatenation and denoising (#I7) achieves consistent gains across all the robustness check columns.
In contrast, the CatRepeat (#I2) and NoisySrc (#I5) methods do not show any gains.

Our results from the all-data setup are provided in Table 5.6. While none of the augmentation
methods appear to surpass baseline BLEU on the regular held-out sets (i.e., Avg column), their
improvements to robustness can be witnessed similar to the in-domain setup. We show a qualitative
example in Table 5.8.

5.4.1 Attention Bleed

Figure 5.2 visualizes cross-attention6 from our baseline model without augmentation as well as
models trained with augmentation. Generally, the NMT decoder is run autoregressively; however,
to facilitate the analysis described in this section, we force-decode reference translations and
extract cross-attention tensors from all models. The cross-attention visualization between a pair
of concatenated sentences, say (G81 + G82 → ~81 + ~82), shows that models trained on augmented
datasets appear to have less cross-attention mass across sentences, i.e., in the attention grid regions
representing G82 ← ~81, and G81 ← ~82. We call attention mass in such regions attention bleed.
This observation con�rms some of the �ndings suggested by Nguyen et al. (2021). We quantify
attention bleed as follows: consider a Transformer NMT model with ! layers, each having �
attention heads and a held-out dataset of {(G8 ~8) |8 = 1, 2, ...# } segments. Furthermore, let each

6Also known as encoder-decoder attention.
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আগামী ২০২২ সােলর মেধƟ এই কাজ সɑূণŪ করার লǘƟমাƯা িʆর হেয়েছ। ̆ધાનમં́ ીએ જણાƥȻુ ંક° સરકાર 

ƨપƧટ લǛયો અને સમયɅચૂકતા સાથે અનેક યોજનાઓ પર કામ કર� રહ� છે.

Reference He said the aim is to complete this task by 2022. The Prime Minister said that the Government is 
working on various schemes with clear targets and timelines.

Baseline He said the Government is working on several schemes with clear objectives and timelines.

B+CatRepeat The target is to be completed by 2022, the Prime Minister said that the Government is working 
on several schemes with clear targets and timelines. is the of of of of of of of of of of of of of

B+CatXL The target is to complete it by 2022. The Prime Minister said that the Government is working on 
a number of schemes with clear targets and timelines.

B+CatSL We have set a target to complete this task by 2022. The Prime Minister said that the Government 
is working on a number of schemes with clear objectives and timelines.

B+NoisySrc The Prime Minister said that the Government is working on several schemes with clear objectives 
and timelines.

B+DenoiseTgt He said the Government is working on several schemes with clear objectives and timelines.
B+CatXL 
+DenoiseTgt

We have set a target of completing it by 2022. The Prime Minister said that the Government is 
working on a number of schemes with clear targets and timelines.

Table 5.8: Example translations from the models trained on all-data setup. See Table 5.6 for
quantitative scores of these models, and Figure 5.2 for a visualization of cross-attention.

segment (G8, ~8) be a concatenation of two sentences, i.e. (G81 +G82, ~81 +~82), with known sentence
boundaries. Let |G8 | and |~8 | be the sequence lengths after BPE segmentation, and |G81 | and |~81 |
be the indices of the end of the �rst sentence (i.e., the sentence boundary) on the source and
target sides, respectively. The average attention bleed across all the segments, layers, and heads is
de�ned as:

�̄ =
1

# × ! × �

#∑
8=1

!∑
;=1

�∑
ℎ=1

18,;,ℎ

where 18,;,ℎ is the attention bleed rate in an attention head ℎ ∈ [1, � ], in layer ; ∈ [1, !], for a single
record at 8 ∈ [1, # ]. To compute 18,;,ℎ , consider that an attention grid �(8,;,ℎ) is of size |~8 | × |G8 |.
Then

18,;,ℎ =
1
|~8 |

[ |~81 |∑
C=1

|G8 |∑
B=|G81 |+1

�
(8,;,ℎ)
C,B +

|~8 |∑
C=|~81 |+1

|G81 |∑
B=1

�
(8,;,ℎ)
C,B

]
where �(8,;,ℎ)C,B is the percent of attention paid to source position B by target position C at decoder
layer ; and head ℎ in record 8 . Intuitively, a lower value of �̄ is better, as it indicates that the model
has learned to pay attention to appropriate regions. As shown in Table 5.7, the models trained on
augmented sentences achieve lower attention bleed.

5.4.2 Sentence Concatenation Generalization

In the previous sections, only two-segment concatenation has been explored; here, we investigate
whether more concatenation further improves model performance and whether models trained on

50



two segments generalize to more than two at test time. We prepare a training dataset having up
to four sentence concatenations and evaluate on datasets having up to four sentences. As shown
in Table 5.9, the model trained with just two segment concatenation achieves a similar BLEU as
the model trained with up to four concatenations.

Dev Test

C-SL C-4SL C-SL C-4SL
Baseline / no join 30.0 27.8 27.8 25.7
Up to two joins 31.9 28.9 29.7 26.7
Up to four joins 31.0 28.9 28.8 26.8

Table 5.9: Indic )English BLEU on held out sets containing up to 4 consecutive sentence concatena-
tions in same language (C-4SL). The two sentences dataset (C-SL) is also given for comparison. The
model trained on two concatenated sentences achieves comparable results on C-4SL, indicating
that no further gains are obtained from increasing concatenation in training.

5.5 Conclusion

We have described simple but e�ective checks for improving test coverage in multilingual NMT
(Section 5.1), and have explored training data augmentation methods such as sentence concatena-
tion and noise addition (Section 5.2). Using a many-to-one multilingual setup, we have investigated
the relationship between these augmentation methods and their impact on robustness in multilin-
gual translation. While the methods are useful in limited training data settings, their impact may
not be visible on single-sentence test sets in a high resource setting. However, our proposed check-
list evaluation reveals the robustness improvement in both the low resource and high resource
settings. We have conducted a glass-box analysis of cross-attention in Transformer NMT showing
both visually and quantitatively that the models trained with augmentations, speci�cally, sentence
concatenation and target sentence denoising, learn a more sharply focused attention mechanism
(Section 5.4.1). Finally, we have determined that two-sentence concatenation in training corpora
generalizes su�ciently to many-sentence concatenation inference (Section 5.4.2).

Ethical Consideration

Limitations: As mentioned in Section 5.1, some multilingual evaluation checks require the
datasets to have multi-parallelism, and coherency in the sentence order. When neither multi-
parallelism nor coherency in the held-out set sentence order is available, we recommend R-XL.
The data augmentation methods proposed in this paper do not require any specialized hardware
or software. Our model and training pipeline can be rerun on a variety of GPU models, including
one with less memory, as 12 GB. However, some large dataset and large vocabulary models may
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require multiple distributed training processes, and/or multiple gradient accumulation steps to
achieve the described batch size.

Only a subset of checks on robustness in multilingual settings have been discussed. While
they serve as starting points for improving robustness, we do not claim that the proposed checks
are exhaustive. We have investigated robustness under Indic-English translation task where all
languages use space characters as word-breakers; we have not investigated other languages such
as Chinese, Japanese etc. The term Indic language to collectively reference 10 Indian languages
only, similar to MultiIndicMT shared task. While the remaining Indian languages and their dialects
are not covered, we believe that the approaches discussed in this chapter generalize to other
languages in the same family.
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(a) Baseline without sentence concatenation (#A1)
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(b) Model trained with concatenated sentences (#A3)

� �
�V!

+H
VDLG
WKH
DLP
LV
WR

FRPSOHWH
WKLV
WDVN
E\

����
�

7KH
3ULPH

0LQLVWHU
VDLG �
WKDW
WKH �

RYHUQPHQW
LV �

ZRUNLQJ
RQ

YDULRXV
VFKHPHV

ZLWK
FOHDU

WDUJHWV
DQG

WLPHOLQHV
� �

��V!

�

���

���

���

���

�

&URVV�$WWHQWLRQ��/D\HU�>0D[@��+HDG�>0D[@

,QSXW

2
XW
SX

W

(c) Model trained with DenoiseTgt augmentation
(#A6)
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(d) Model trained with both CatXL and DenoiseTgt
augmentations (#A7)

Figure 5.2: Cross-attention visualization from baseline model and concatenated (cross-language)
model. For each position in the grid, only the maximum value across all attention-heads from
all the layers is visualized. The darker color implies more attention weight, and the black bars
indicate sentence boundaries. The model trained on concatenated sentences has more pronounced
cross-attention boundaries than the baseline, indicating less mass is bled across sentences. The
model trained on both concatenated and denoising sentences has the least attention mass across
sentences.
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Chapter 6

Rare Languages

“Vasudhaiva Kutumbakam" (The entire world is a family) — Maha Upanishad

NMT has progressed to reach human performance on select benchmark tasks (Barrault et al.,
2019a, 2020). However, as MT research has mainly focused on translation between a few high
resource languages, the unavailability of usable-quality translation models for low resource
languages remains an ongoing concern. Even those commercial translation services attempting to
broaden their language coverage has only reached around one hundred languages; this excludes
most of the thousands of languages used around the world today.

Freely available corpora of parallel data for many languages are available, though they are
hosted at various sites, and are in various forms. A challenge for incorporating more languages
into MT models is a lack of easy access to all of these datasets. While standards like ISO 639-
3 have been established to bring consistency to the labeling of language resources, these are
not yet widely adopted. In addition, scaling experimentation to several hundred languages on
large corpora involves a signi�cant engineering e�ort. Simple tasks such as dataset preparation,
vocabulary creation, transformation of sentences into sequences, and training data selection
becomes formidable at scale due to corpus size and heterogeneity of data sources and �le formats.
We have developed tools to precisely address all these challenges, which we demonstrate in this
work.

Speci�cally, we o�er three tools which can be used either independently or in combination to
advance NMT research on a wider set of languages (Section 6.1): �rstly, MTData, which helps
to easily obtain parallel datasets (Section 6.1.1); secondly, NLCodec, a vocabulary manager and
storage layer for transforming sentences to integer sequences, that is e�cient and scalable (Section
6.1.2); and lastly, RTG, a feature-rich PyTorch-backed NMT toolkit that supports reproducible
experiments (Section 6.1.3).

We demonstrate the capabilities of our tools by preparing a massive bitext dataset with more
than 9 billion tokens per side, and training a single multilingual NMT model capable of translating
500 source languages to English (Section 6.3). We show that the multilingual model is usable either
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# List all the available datasets for deu-eng
$ mtdata list -l deu-eng
# Get the selected training & held-out sets
$ mtdata get -l deu-eng -o data -ts Statmt-newstest_deen-201{8,9}-deu-eng \
-tr Statmt-commoncrawl_wmt13-1-deu-eng Statmt-europarl-10-deu-eng \

Statmt-news_commentary-16-deu-eng --merge

Listing 1: MTData commands for listing and downloading German-English datasets (Tested on
v0.3.4). The –merge �ag results in merging all the training datasets speci�ed by -tr argument
into a single �le.

as a service for translating several hundred languages to English (Section 6.4.1), or as a parent model
in a transfer learning setting for improving translation of low resource languages (Section 6.4.2).

6.1 Tools

Our tools are organized into the following sections:

6.1.1 MTData

MTData addresses an important yet often overlooked challenge – dataset preparation. By assign-
ing an ID for datasets, we establish a clear way of communicating the exact datasets used for MT
experiments, which helps in reproducing the experimental setup. By o�ering a uni�ed interface
to datasets from many heterogeneous sources, MTData hides mundane tasks such as locating
URLs, downloading, decompression, parsing, and sanity checking. Some noteworthy features are:
• Indexer : a large index of publicly available parallel datasets.
• ID Standardization: creates standardized IDs for datasets, along with language IDs normalized

to BCP-47 like codes; more details in section 6.2.
• Parsers: parses heterogeneous data formats for parallel datasets, and produces a simple plain

text �le by merging all the selected datasets.
• Extensible: new datasets and parsers can be easily added.
• Local Cache: reduces network transfers by maintaining a local cache, which is shared between

experiments.
• Sanity Checker: performs basic sanity checks such as segment count matching and empty

segment removal. When error states are detected, stops the setup with useful error messages.
• Reproducible: stores a signature �le that can be used to recreate the dataset at a later time.
• Courtesy: shows the original BibTEX citation attributed to datasets.
• Easy Setup: pip install mtdata

• Open-source: https://github.com/thammegowda/mtdata
Listing 1 shows an example for listing and getting datasets for German-English. In Section 6.3.1,

55

https://github.com/thammegowda/mtdata


we use MTDatato obtain thousands of publicly available datasets for a large many-to-English
translation experiment.

6.1.2 NLCodec

NLCodec is a vocabulary manager with encoding-decoding schemes to transform natural language
sentences to and from integer sequences.
Features:

• Versatile: Supports commonly used vocabulary schemes such as characters, words, and byte-
pair-encoding (BPE) subwords (Sennrich et al., 2016b).

• Scalable: Apache Spark1(Zaharia et al., 2016) backend can be optionally used to create a vocabu-
lary from massive datasets.

• Easy Setup: pip install nlcodec

• Open-source:
https://github.com/isi-nlp/nlcodec/

When the training datasets are too big to be kept in the primary random access memory (RAM),
the use of secondary storage is inevitable. The training processes requiring random examples
lead to random access from a secondary storage device. Even though the latest advancements in
secondary storage technology such as solid-state drive (SSD) have faster serial reads and writes,
their random access speeds are signi�cantly lower than that of RAM. To address these problems,
we include an e�cient storage and retrieval layer, NLDb, which has the following features:
• Memory e�cient by adapting data types based on vocabulary size. For instance, encoding with

vocabulary size less than 256 (such as characters) can be e�ciently represented using 1-byte
unsigned integers. Vocabularies with fewer than 65,536 types, such as might be generated
when using subword models (Sennrich et al., 2016b) require only 2-byte unsigned integers, and
4-byte unsigned integers are su�cient for vocabularies up to 4 billion types. As the default
implementation of Python, CPython, uses 28 bytes for all integers, we accomplish this using
NumPy (Harris et al., 2020). This optimization makes it possible to hold a large chunk of training
data in smaller RAM, enabling fast random access.

• Parallelizable: O�ers a multipart database by horizontal sharding that supports parallel writes
(e.g., Apache Spark) and parallel reads (e.g., distributed training).

• Supports commonly used batching mechanisms, such as random batches with approximately-
equal-length sequences.
NLDb has a minimal footprint and is part of the NLCodec package. In Section 6.3, we take

advantage of the scalability and e�ciency aspects of NLCodec and NLDb to process a large
parallel dataset with 9 billion tokens on each side.

1https://spark.apache.org/
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6.1.3 RTG

Reader translator generator (RTG) is a neural machine translation (NMT) toolkit based on Py-
torch (Paszke et al., 2019). Notable features of RTG are:
• Reproducible: All the required parameters of an experiment are included in a single YAML

con�guration �le, which can be easily stored in a version control system such as git or shared
with collaborators.

• Implements Transformer (Vaswani et al., 2017), and recurrent neural networks (RNN) with
cross-attention models (Bahdanau et al., 2015a; Luong et al., 2015).

• Supports distributed training on multi-node multi-GPUs, gradient accumulation, and Float16
operations.

• Integrated Tensorboard helps in visualizing training and validation losses.
• Supports weight sharing (Press and Wolf, 2017), parent-child transfer (Zoph et al., 2016), beam

decoding with length normalization (Wu et al., 2016), early stopping, and checkpoint averaging.
• Flexible vocabulary options with NLCodec and SentencePiece (Kudo and Richardson, 2018)

which can be either shared or separated between source and target languages.
• Easy setup: pip install rtg

• Open-source: https://isi-nlp.github.io/rtg/

6.2 Dataset ID Standardization

Datasets collected from heterogeneous sources come in a variety of �le formats, leading to chaos.
We standardize parallel dataset IDs to the format:2

Group-Name-Version-Lang1-Lang2

• Group: Identi�er of dataset origin, e.g., name of website or organization that has prepared
the dataset.

• Name: Dataset name

• Version: Version number

• Lang1 and Lang2 are language IDs, which are described in the following.

Language ID standardization: ISO 639-13 is commonly used to identify languages in publi-
cations and software systems. This standard nomenclature uses two-letter codes, and has space
for 262 = 676 codes, out of which, only 183 codes are o�cially assigned to languages. Thus, a
vast majority of known, living languages do not have a standard identi�er under ISO 639-1. On
the other hand, ISO 639-3

4, a revised but not yet widely adopted nomenclature, uses three-letter
2Apache Maven uses a similar format for Java library IDs
3https://www.iso.org/standard/4766.html
4https://iso639-3.sil.org/
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codes, and has space for 263 = 17, 576 languages with more than 7, 800 of them o�cially assigned.
We have used ISO 639-3 since the early version of MTData. However, we soon realized that ISO
639-3 does not distinguish nuances in languages. For instance, some users want to distinguish
Brazilian Portuguese and Portuguese of Portugal, and have separate datasets created for these
languages. The distinction between region and script variants of languages is not supported
by ISO 639-3, and hence we have turned to Best Current Practice (BCP)-47 (Phillips and Davis,
2009) for resolving this problem. BCP 47, also known as Internet Engineering Task Force (IETF)
language tag, uses a combination of language, script, and region IDs to uniquely and consistently
identify human languages. This standard relies on the following other standards:

• Language: ISO 639, e.g., en, de, ils

• Script: ISO 15924, e.g., Latn, Cyrl

• Region: ISO 3166-1 (e.g., US, GB, IN, AU), and UN M49 (e.g., 840, 826, 356, 036)

Since MTData version 0.3, we use a simpli�ed BCP 47-like tags5. The implementation used in
MTData matches BCP 47 speci�cations for the most part, except the following:

• BCP 47 uses ISO 639-1 (i.e., two-letter code) for 183 languages and ISO 639-3 (i.e., three-letter
codes) for the remaining languages. We use ISO 639-3 code for all languages. Our system,
being relatively new, uses ISO 639-3 since the beginning, thus 639-3 is both consistent and
backward compatible.

• BCP 47 uses the ‘-’ character to join languages, scripts, and region sub-tags. Since the MT
community has long used ‘-’ character to designate bitext languages, e.g., ‘fra-eng’, we
instead use ‘_’ character.

• For the region sub-tag, BCP 47 supports use of either the two-letter ISO 3166-1 codes, or the
three digit UN M49 codes. We use ISO 3166-1 codes only, as it is the most popular and easy
to comprehend.

• BCP 47 has support for tagging transformation as well as locale information. These are
currently not supported in MTData, however these are interesting directions for future
enhancements.

The script and region tags are optional. In favor of brevity, we suppress default scripts whenever
unambiguous, e.g., eng-Latn is eng since Latn is the default script of English.

Therefore, with the above simpli�cations, our language tags are of the format: aaa[_Bbbb][_CC],
where (a) the mandatory three lowercase letters in the beginning is a valid language identi�er from
ISO 639-3 nomenclature, (b) the optional four letters (title-cased) in the middle is a script identi�er
from ISO 15924, and (c) the optional two upper-case letters in the end are region identi�er from
ISO 3166-1.

5Thanks, to Kenneth Hea�eld, for educating us with BCP 47.
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6.3 Many-to-English Multilingual NMT

In this section, we demonstrate the use of our tools by creating a massively multilingual NMT
model from publicly available datasets.

6.3.1 Dataset

We use MTData to download datasets from various sources, given in Table 6.1. To minimize data
imbalance, we select only a subset of the datasets available for high resource languages, and select
all available datasets for low resource languages. The selection is aimed to increase the diversity
of data domains and quality of alignments.

Dataset Reference
Europarl Koehn (2005)
KFTT Ja-En Neubig (2011)
Indian6 Post et al. (2012)
OPUS Tiedemann (2012)
UNPCv1 Ziemski et al. (2016)
Tilde MODEL Rozis and Skadin, š (2017)
TEDTalks Qi et al. (2018)
IITB Hi-En Kunchukuttan et al. (2018)
Paracrawl Esplà et al. (2019)
WikiMatrix Schwenk et al. (2019)
JW300 Agić and Vulić (2019)
PMIndia Haddow and Kirefu (2020)
OPUS100 Zhang et al. (2020)
WMT [13-20] Bojar et al. (2013, 2014, 2015, 2016, 2017a, 2018);

Barrault et al. (2019a, 2020)

Table 6.1: Various sources of MT datasets.

Cleaning: We use SacreMoses6 to normalize Unicode punctuations and digits, followed
by word tokenization. We remove records that are duplicates, have abnormal source-to-target
length ratios, have many non-ASCII characters on the English side, have a URL, or which overlap
exactly, either on the source or target side, with any sentences in held out sets. As preprocessing
is compute-intensive, we parallelize using Apache Spark. The cleaning and tokenization results in
a corpus of 474 million sentences and 9 billion tokens on the source and English sides each. The

6https://github.com/isi-nlp/sacremoses a fork of https://github.com/alvations/sacremoses with im-
provements to tokenization for many low resource languages.
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Figure 6.1: Datasets curated from various sources. These statistics are extracted as of 2022 February
(version 0.3.4)

.

token and sentence count for each language are provided in Figure 6.2. Both the processed and
raw datasets are available at http://rtg.isi.edu/many-eng/data/v1/.7

6.3.2 Many-to-English Multilingual Model

We use RTG to train Transformer NMT (Vaswani et al., 2017) with a few modi�cations. Firstly,
instead of a shared BPE vocabulary for both source and target, we use two separate BPE vocab-
ularies. Since the source side has 500 languages and the target side has English only, we use a
large source vocabulary and a relatively smaller target vocabulary. A larger target vocabulary
leads to higher time and memory complexity, whereas a large source vocabulary increases only
the memory complexity but not the time complexity. We train several models, ranging from the
standard 6 layers, 512-dimensional Transformers to larger ones with more parameters. Since the
dataset is massive, a larger model trained on big mini-batches yields the best results. Our best
performing model is a 768 dimensional model with 12 attention heads, 9 encoder layers, 6 decoder
layers, feed-forward dimension of 2048, dropout and label smoothing at 0.1, using 512, 000 and
64, 000 BPE types as source and target vocabularies, respectively. The decoder’s input and output
embeddings are shared. Since some English sentences are replicated to align with many sentences
from di�erent languages (e.g. the Bible corpus), BPE merges are learned from the deduplicated
sentences using NLCodec. Our best performing model is trained with an e�ective batch size of
about 720,000 tokens per optimizer step. Such big batches are achieved by using mixed-precision
distributed training on 8 NVIDIA A100 GPUs with gradient accumulation of 5 mini-batches, each
having a maximum of 18,000 tokens. We use the Adam optimizer (Kingma and Ba, 2015) with

7A copy is at https://opus.nlpl.eu/MT560.php
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Figure 6.2: Training data statistics for 500 languages, sorted as descending order of English token
count, obtained after deduplication and �ltering (see Section 6.3.1). The full name for these ISO
639-3 codes can be looked up using MTData, e.g. mtdata-iso eng.

8000 warm-up steps followed by a decaying learning rate, similar to Vaswani et al. (2017). We stop
training after �ve days and six hours when a total of 200K updates are made by the optimizer;
validation loss is still decreasing at this point. To assess the translation quality of our model, we
report BLEU (Papineni et al., 2002; Post, 2018)8 on a subset of languages for which known test sets
are available, as given in Figure 6.3, along with a comparison to Zhang et al. (2020)’s best model.9

8All our BLEU scores are obtained from SacreBleu BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.13.
9Scores are obtained from https://github.com/bzhangGo/zero/tree/master/docs/multilingual_laln_

lalt; accessed: 2021/03/30
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Figure 6.3: Many-to-English BLEU on OPUS-100 tests (Zhang et al., 2020). Despite having four
times more languages on the source side, our model scores competitive BLEU on most languages
with the strongest system of Zhang et al. (2020). The tests where our model scores lower BLEU
have shorter source sentences (mean length of about three tokens).

6.4 Applications

The model we trained as a demonstration for our tools is useful on its own, as described in the
following sections.

6.4.1 Readily Usable Translation Service

Our pretrained NMT model is readily usable as a service capable of translating several hundred
source languages to English. By design, source language identi�cation is not necessary. Figure 6.3
shows that the model scores more than 20 BLEU, which maybe be a useful quality for certain
downstream applications involving web and social media content analysis. Apache Tika (Mattmann
and Zitting, 2011), a content detection and analysis toolkit capable of parsing thousands of �le
formats, has an option for translating any document into English using our multilingual NMT
model.10 Our model has been packaged and published to DockerHub11, which can be obtained by
the following command:

docker run --rm -i -p 6060:6060 tgowda/rtg-model:500toEng-v1

# For GPU backend, add --gpus '"device=0"'

The above command starts a docker image with HTTP server having a web interface, as can
be seen in Figure 6.4, and a REST API. An example interaction with the REST API is as follows:

$ API="http://localhost:6060/translate"

$ curl --data "source=Comment allez-vous?" --data "source=Bonne journée" $API

{

"source": [ "Comment allez-vous?", "Bonne journée" ],

"translation": [ "How are you?", "Have a nice day" ]

}
10https://cwiki.apache.org/confluence/display/TIKA/NMT-RTG
11https://hub.docker.com/
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Figure 6.4: RTG Web Interface

6.4.2 Parent Model for Low Resource MT

Fine-tuning is a useful transfer learning technique for improving the translation of low resource
languages (Zoph et al., 2016; Neubig and Hu, 2018; Gheini and May, 2019). In the following
subsections, we explore �ne-tuning in both bilingual and multilingual setups.

6.4.2.1 Bilingual Setup

Consider Breton-English (bre-eng) and Northern Sami-English (sme-eng), two of the low resource
settings for which our model has relatively low BLEU (see Figure 6.3). To show the utility of �ne-
tuning with our model, we train a strong baseline Transformer model, one for each language, from
scratch using OPUS-100 training data (Zhang et al., 2020), and �ne-tune our multilingual model
on the same dataset as the baselines. We shrink the parent model vocabulary and embeddings to
the child model dataset, and train all models on NVIDIA P100 GPUs until convergence.12 Table 6.2,
which shows BLEU on the OPUS-100 test set for the two low resource languages, indicates that
our multilingual NMT parent model can be further improved with �ne-tuning on limited training
data. The �ne-tuned model achieves 10 Bleu higher than the baseline model.

6.4.2.2 Multilingual Model

In the previous section, the 500-English multilingual model was proven e�ective while indepen-
dently adapting to each rare language, e.g., bre-eng and sme-eng. In this section, we explore joint

12More info: https://github.com/thammegowda/006-many-to-eng/tree/master/lowres-xfer
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Model bre-eng sme-eng
Baseline 12.7 10.7
Parent 11.8 8.6
Finetuned 22.8 19.1

Table 6.2: Finetuning our multilingual NMT on limited training data in low resource settings
signi�cantly improves translation quality, as quanti�ed by BLEU.

adaptation simultaneously to 9 low resource languages, taken from IARPA MATERIAL program.13.
Table 6.3 provides training data statistics for all nine languages. See Table 6.4 for the results.

Languages
Clean parallel Noisy parallel

Sents Source Toks English Toks Sents Source Toks English Toks

swa-eng 72.3k 1.8M 2.0M 498k 12.6M 14.8M
tgl-eng 46.7k 804k 823k 744k 21.4M 20.7M
som-eng 21.5k 651k 688k 4.8M 124.0M 126.3M
lit-eng 39.5k 655k 857k 3.0M 64.1M 76.0M
pus-eng 39.9k 886k 820k 1.05M 14.2M 12.9M
bul-eng 38.1k 773k 858k 11.1M 282.4M 295.2M
kat-eng 3.3k 52k 74k 3.5M 59.0M 76.1M
kaz-eng 71.4k 559k 595k 25.0M 423M 515.9M
fas-eng 31.7k 715k 798k 249k 5.6M 5.3M
Combined 364.3k 6.9M 7.5M 49.9M 1.0B 1.1B

Table 6.3: Training data statistics for 9 low resource languages used in IARPA MATERIAL program.

6.4.3 Cross-lingual Contextual Embeddings

The multilingual NMT model’s encoder learns bi-directional contexualized embeddings that are
cross-lingual across 500 languages. We created a sequence classi�er, and initialized the source
embeddings matrix and all the encoder layers from our multilignual NMT. We �ne-tuned the
classi�er on MultiNLI (Williams et al., 2018) dataset with English training data, and evaluated on
XNLI datasets on 15 languages (Conneau et al., 2018). This setup commonly known as “zero-shot
transfer” or "cross-lingual transfer" in literature. During the �ne-tuning, embeddings and all
other parameters, except the last layer, were frozen. As shown in Table 6.5, the encoder of our
multilingual NMT model has better performance than multilingual BERT and XLM with masked
language modeling (MLM), and it is competitive with XLM with a translation modeling objective
(XLM with MLM+TLM) (Conneau and Lample, 2019b).

13https://www.iarpa.gov/research-programs/material
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BLEU (lc detok) on Analysis MacroF1 (lc detok) on Analysis
Languages Prev best 500-Eng +ft.noisy +ft.clean Prev best 500-Eng +ft.noisy +ft.clean

swa-eng 34.4 26.6 36.0 38.3 35.7 29.8 37.5 39.2

tgl-eng 39.5 33.5 40.7 43.3 45.0 40.9 48.1 47.5
som-eng 24.4 7.7 24.9 27.7 26.2 10.8 28.0 30.0

lit-eng 32.6 25.1 33.1 35.4 39.4 26.7 37.6 37.2
pus-eng 20.9 5.9 20.4 21.9 19.2 8.2 20.1 21.1

bul-eng 45.2 39.3 44.9 48.2 46.5 41.0 45.2 43.5
kat-eng 31.9 21.2 32.2 30.1 32.7 19.9 34.3 29.5
kaz-eng 30.4 15.2 27.0 25.6 26.4 15.0 26.2 23.4
fas-eng 27.2 21.8 27.1 28.3 23.9 22.3 25.3 23.7

Table 6.4: Multilingual NMT achieves state-of-the-art performance on low resource language via
�netuning. ‘Prev best’ is the best performing bilingual model (1 per each setting). ‘+ft.noisy’ is
500-eng model �netuned to noisy parallel data, and ‘+ft.clean’ is ‘+ft.noisy’ further �netuned on a
limited quantity of clean parallel data (see Table 6.3).

Layers,dims ar bg de el es fr hi ru sw th tr ur vi zh Avg

mBERT 12L, 768d 62.1 70.5 74.3 58.3 63.8
XLM(MLM) 12L, 1024d 68.5 74.0 74.2 73.1 76.3 76.5 65.7 73.1 64.6 69.3 67.8 63.4 71.2 71.9 70.7

+TLM 12L,1024d 73.1 77.4 77.8 76.6 79.9 78.7 69.6 75.3 68.4 73.2 72.5 67.3 76.1 76.5 74.5

Our model 9L, 768d 73.9 77.2 75.6 77.1 76.9 76.8 69.2 75.2 70.9 71.8 75.3 66.0 75.7 74.2 74.0

Table 6.5: Zero-shot transfer performance (accuracy) on XNLI task. mBERT and XLM scores are
retrieved from Conneau and Lample (2019b). ‘Our model’ is the encoder of 500-English NMT model
attached to a classi�cation layer. Models are �ne-tuned on English NLI dataset and evaluated on
other language. Our model has better accuracy than mBERT and XLM (MLM) models which use
monolingual data only, and it is competitive with XLM (MLM+TLM) which uses parallel data. The
best scores are highlighted.

6.5 Revised Multilingual NMT with Improved Robustness

to Language Alternations

This section is a revision to the 500-to-English (described in Section 6.3) model. There are three
objectives for this revision: (1) the general objective of increasing the translation quality for
already supported languages, (2) expanding support for even rarer languages, and (3) improving
multilingual NMT robustness to rare phenomena such as code switching inputs (Chapter 5).

For the sake of clarity, let us call the 500-to-English experiment described in Section 6.3 as the
�rst version (V1), and the experiment in this section as the second version (V2).
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6.5.1 Dataset

Since the creation of V1, we have discovered more datasets and included in our MTData index.
Unlike V1, which tried to balance datasets by excluding some datasets for high resource languages,
we include all the available any-to-English parallel data in V2. We follow the same procedure as
V1 (Section 6.3.1): cleaning, deduplication, tokenization, and removal of any accidentally entered
test sentence from training corpus. The resulting V2 dataset has 2.3B sentences with about 37B
tokens on each side, whereas the V1 dataset has about 474M parallel segments with 9B tokens on
each side. Figure 6.5 provides the training data statistics.

6.5.2 Model

Our V2 model has similar architecture as V1, which is a transformer with 9 encoders and 6
decoders, 512k source and 64k target vocabulary. Since the V2 training data is bigger than V1, our
V2 model is made bigger: 1024 hidden dimensions, 4098 feed forward dimensions, and 16 attention
heads. During training the V2 model, we use an e�ective mini batch size of 800k tokens, which
is achieved using b�oat16 operations, gradient accumulations, and multiple GPUs. The training
process achieved 74k optimizer updates in 3.5 days using 12 A100 GPUs (6 nodes x 2 each). The
validation loss was still decreasing at that point.

6.5.3 Results

As shown in Table 6.6, the V2 model has consistent improvements across test sets: United Nations
(Ziemski et al., 2016) which has 5 high resource languages, OPUS100 (Zhang et al., 2020) which
cover 92 (medium-resource) languages, and WMT NewsTests (Bojar et al., 2017a, 2018; Barrault
et al., 2019a, 2020) having high quality test sets for 23 (mostly high resource languages).

OPUS 100 United Nations WMT NewsTests
Source Languages 92 5 23
Segments; Src/Eng toks 181.5k; 1.6M/1.7M 20k; 474k/533k 292.6k; 5M/6.1M
Version Name BLEU MacroF1 BLEU MacroF1 BLEU MacroF1
v1 500-Eng 33.6 32.5 54.3 42.3 29.4 26.7
v2 600-Eng 34.2 33.2 55.7 44.1 32.4 32.5

Table 6.6: Multilingual NMT BLEU and MacroF1 scores. In addition to supporting more rare
languages on the source side, the 600-English model has consistent improvements across on
OPUS100 (Zhang et al., 2020) having test sets for 92 languages, United Nations (Ziemski et al.,
2016) having 5 high resource languages, and WMT News Test (Barrault et al., 2020) having high
quality test sets for 23 languages.
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Figure 6.5: Training data statistics for 600 languages, sorted in descending order by English token
count, obtained after deduplication and �ltering (see Section 6.3.1). The full name for these ISO
639-3 codes can be looked up using MTData, e.g. mtdata-iso eng.

6.5.4 Language Alternation Robustness

In order to improve the multilingual NMT robustness for language alternations, we apply useful
augmentation methods described in Section 5.3.1. Since the V2 dataset is already quite big, further
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augmentations at this scale results in prohibitively expensive cost. Hence, we select at most 200k
random sentences per each language (i.e., down-sampling), which resulted in a corpus of 42.5M
sentences in total. After augmenting with the two augmentation methods that proved e�ective in
Chapter 5 – denoising, and random sentence concatenation – on this smaller corpus, we obtained
a parallel corpus of 130M segments. We �ne-tuned the V2 model on this 130M sentence corpus
(say V2.1 model), and evaluated on the same test sets as Section 5.3.1. As shown in Table 6.7, the
V2.1 model, although it takes a loss in Original test sentences, improves translation quality for
inputs with partially translations (C-TL), missed sentence segmentations (C-SL), intersentential
language alternations (C-XL), and random topic switching (R-XL).

Version Name Orig C-TL C-SL C-XL R-XL
v1 500-Eng 31.2 43.4 25.7 24.5 23.7
v2 600-eng 32.0 42.4 25.4 24.6 24.4
v2.1 v2+CodeSwitching 29.6 62.9 30.5 29.9 29.8

Table 6.7: Multilingual NMT’s BLEU scores on language alternation datasets. These test sets are
described in Section 5.1 and statistics are given in Table 5.2. Data augmentation methods improve
robustness to language alternation, however incur a little loss on the original single sentence
translation quality.

6.6 Conclusion

We have introduced our tools: MTData for downloading datasets, NLCodec for processing,
storing and retrieving large scale training data, and RTG for training NMT models. Using these
tools, we have collected a massive dataset and trained a multilingual model for many-to-English
translation. We have demonstrated that our model can be used independently as a translation
service, and also showed its use as a parent model for improving low resource language translation.
We have also showed the e�ectiveness of data augmentation methods to improve the robustness
of multilingual model to language alternations. All the described tools, used datasets, and trained
models are made available to the public for free.

Ethical Consideration

Failure Modes: MTData will fail to operate, unless patched, when hosting services change their
URLs or formats over time. On certain scenarios when a dataset has been previously accessed and
retained in local cache, MTData continues to operate with a copy of previous version and ignores
server side updates. We have done our best e�ort in normalizing languages to ISO 639-3 standard
and BCP-47b tags. Our multilingual NMT model is trained to translate a one or two full sentences
at a time without considering source language information; translation of short phrases without a
proper context might result in a poor quality translation.
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Diversity and Fairness: We cover all languages on the source side for which any publicly
available dataset exists, which happens to be about 500 source languages. Our model translates to
English only, hence only English speakers bene�t from this work.

Climate Impact: MTData reduces network transfers to a minimum by maintaining a local
cache to avoid repetitive downloads. In addition to the raw datasets, preprocessed data is also
available to avoid repetitive computation. Our Multilingual NMT has higher energy cost than a
typical single directional NMT model due to a larger number of parameters, however, since our
single model translates hundreds of languages, the energy requirement is signi�cantly lower than
the total consumption of all independent models. Our trained models with are also made available
for download.

Dataset Ownership: MTData is a client side library that does not have the ownership of datasets
in its index. Addition, removal, or modi�cation in its index is to be submitted by creating an issue
at https://github.com/thammegowda/mtdata/issues. We ask the dataset users to review the
dataset license, and acknowledge its original creators by citing their work, whose BibTEX entries
may be accessed using:
mtdata list -n <NAME> -l <L1-L2> –full

The prepared dataset that we have made available for download includes citations.bib that
acknowledges all the original creators of datasets. We do not vouch for quality and fairness of all
the datasets.
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Chapter 7

Related Work

“If I have seen further it is by standing on the shoulders of Giants." — Sir Isaac Newton, 1675

In this chapter, we review the related work, organized in the following sections.

7.1 Rare Phenomena Learning

The class imbalance problem has been extensively studied in classical ML (Japkowicz and Stephen,
2002). In the medical domain, Mazurowski et al. (2008) �nd that classi�er performance deteriorates
with even modest imbalance in the training data. Untreated class imbalance is known to deteriorate
the performance of image segmentation. Sudre et al. (2017) investigate the sensitivity of various
loss functions. Johnson and Khoshgoftaar (2019) survey imbalance learning and report that the
e�ort is mostly targeted to computer vision tasks. Buda et al. (2018) provide a de�nition and
quanti�cation method for two types of class imbalance: step imbalance and linear imbalance. Since
the imbalance in Zip�an distribution of classes is neither single-stepped nor linear, we use a
divergence based measure to quantify imbalance.

7.2 Rare Words at Training

Sennrich et al. (2016b) introduce BPE as a simpli�ed way to avoid out-of-vocabulary (OOV) words
without having to use a back-o� dictionary. They note that BPE improves the translation of not
only the OOV words, but also some rare in-vocabulary words. The analysis by Morishita et al.
(2018) is di�erent from ours in that they view various vocabulary sizes as hierarchical features
that are used in addition to a �xed vocabulary. Salesky et al. (2018) o�er an e�cient way to search
BPE vocabulary size for NMT. Kudo (2018) use BPE as a regularization technique by introducing
sampling based randomness to the BPE segmentation. To the best of our knowledge, no prior
works analyze BPE’s e�ect on class imbalance.
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7.3 Rare Words at Evaluation

Many metrics have been proposed for MT evaluation, which we broadly categorize into model-free
or model-based. Model-free metrics compute scores based on translations but have no signi�cant
parameters or hyperparameters that must be tuned a priori; these include Bleu (Papineni et al.,
2002), NIST (Doddington, 2002), TER (Snover et al., 2006), and ChrF1 (Popović, 2015). Model-based
metrics have a signi�cant number of parameters and, sometimes, external resources that must be
set prior to use. These include METEOR (Banerjee and Lavie, 2005), BLEURT (Sellam et al., 2020),
YiSi (Lo, 2019), ESIM (Mathur et al., 2019), and BEER (Stanojević and Sima’an, 2014). Model-based
metrics require signi�cant e�ort and resources when adapting to a new language or domain, while
model-free metrics require only a test set with references.

Mathur et al. (2020) have recently evaluated the utility of popular metrics and recommend
the use of either ChrF1 or a model-based metric instead of Bleu. We compare our MacroF1 and
MicroF1 metrics with Bleu, ChrF1, and BLEURT (Sellam et al., 2020). While Mathur et al. (2020)
use Pearson’s correlation coe�cient (A ) to quantify the correlation between automatic evaluation
metrics and human judgements, we instead use Kendall’s rank coe�cient (g), since g is more
robust to outliers than A (Croux and Dehon, 2010).

7.3.1 Rare Words are Important

That natural language word types roughly follow a Zip�an distribution is a well known phe-
nomenon (Zipf, 1949; Powers, 1998). The frequent types are mainly so-called “stop words,” function
words, and other low-information types, while most content words are infrequent types. To counter
this natural frequency-based imbalance, statistics such as inverted document frequency (IDF) are
commonly used to weigh the input words in applications such as information retrieval (Jones,
1972). In NLG tasks such as MT, where words are the output of a classi�er, there has been scant
e�ort to address the imbalance. Doddington (2002) is the only work we know of in which the
‘information’ of an n-gram is used as its weight, such that rare n-grams attain relatively more
importance than in BLEU. We abandon this direction for two reasons: Firstly, as noted in that
work, large amounts of data are required to estimate n-gram statistics. Secondly, unequal weighing
is a bias that is best suited to datasets where the weights are derived from, and such biases often
do not generalize to other datasets. Therefore, unlike Doddington (2002), we assign equal weights
to all n-gram classes, and in this work we limit our scope to unigrams only.

While Bleu is a precision-oriented measure, METEOR (Banerjee and Lavie, 2005) and CHRF
(Popović, 2015) include both precision and recall, similar to our methods. However, neither of
these measures try to address the natural imbalance of class distribution. BEER (Stanojević and
Sima’an, 2014) and METEOR (Denkowski and Lavie, 2011) make an explicit distinction between
function and content words; such a distinction inherently captures frequency di�erences since
function words are often frequent and content words are often infrequent types. However, doing
so requires the construction of potentially expensive linguistic resources. This work does not
make any explicit distinction and uses naturally occurring type counts to e�ect a similar result.
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7.3.2 F-measure as an Evaluation Metric

F-measure (Rijsbergen, 1979; Chinchor, 1992) is extensively used as an evaluation metric in
classi�cation tasks such as part-of-speech tagging, named entity recognition, and sentiment
analysis (Derczynski, 2016). Viewing MT as a multi-class classi�er is a relatively new paradigm
(Gowda and May, 2020), and evaluating MT solely as a multi-class classi�er as proposed in this work
is not an established practice. However, �1 measure is sometimes used for various analyses when
Bleu and others are inadequate: The compare-mt tool (Neubig et al., 2019) supports comparison
of MT models based on �1 measure of individual types. Gowda and May (2020) use �1 of individual
types to uncover frequency-based bias in MT models. Sennrich et al. (2016b) use corpus-level
unigram �1 in addition to Bleu and ChrF, however, corpus-level �1 is computed as MicroF1.
To the best of our knowledge, there is no previous work that clearly formulates the di�erences
between micro- and macro- averages, and justi�es the use of MacroF1 for MT evaluation.

7.4 Robustness to Rare Styles

Machine Translation Robustness: MT robustness has been investigated before within the
scope of bilingual translation settings. Some of those e�orts include robustness against input
perturbations (Cheng et al., 2018), naturally occurring noise (Vaibhav et al., 2019), and domain shift
(Müller et al., 2020). However, as we have shown in this work, multilingual translation models
can introduce new aspects of robustness to be desired and evaluated. The robustness checklist
proposed by Ribeiro et al. (2020) for NLP modeling in general does not cover translation tasks,
whereas our work focuses entirely on the multilingual translation task.

Augmentation Through Concatenation: Concatenation has been used before as a simple-
to-incorporate augmentation method. Concatenation can be limited to consecutive sentences as
a means to provide extended context for translation (Tiedemann and Scherrer, 2017; Agrawal
et al., 2018), or additionally include putting random sentences together, which has been shown to
result in gains under low resource settings (Nguyen et al., 2021; Kondo et al., 2021). While in a
multilingual setting such as ours, data scarcity is less of a concern as a result of combining multiple
corpora, concatenation is still helpful to prepare the model for scenarios where language switching
is plausible. Besides data augmentation, concatenation has also been used to train multi-source
NMT models. Multi-source models (Och and Ney, 2001) translate multiple semantically-equivalent
source sentences into a single target sentence. Dabre et al. (2017) show that by concatenating the
source sentences (equivalent sentences from di�erent languages), they are able to train a single-
encoder NMT model that is competitive with models that use separate encoders for di�erent source
languages. Backtranslation (Sennrich et al., 2016a) is another useful method for data augmentation,
however it is more expensive when the source side has many languages, and does not focus on
language switching.
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Attention Weights: Attention mechanism (Bahdanau et al., 2015b) enables the NMT decoder
to choose which part of the input to focus on during its stepped generation. The attention
distributions learned while training a machine translation model, as an indicator of the context
on which the decoder is focusing, have been used to obtain word alignments (Garg et al., 2019;
Zenkel et al., 2019, 2020; Chen et al., 2020). In this work, by visualizing attention weights, we
depict how augmenting the training data guides attention to more neatly focus on the sentence of
interest while decoding its corresponding target sentence. We are also able to quantify this by the
introduction of the attention bleed metric.

7.5 Rare Languages

Johnson et al. (2017) show that NMT models are capable of multilingual translation without any
architectural changes, and observe that when languages with abundant data are mixed with
low resource languages, the translation quality of low resource pairs are signi�cantly improved.
They use a private dataset of 12 language pairs; we use publicly available datasets for up to 500
languages. Qi et al. (2018) assemble a multi-parallel dataset for 58 languages from TEDTalks
domains, which are included in our dataset. Aharoni et al. (2019) conduct a study on massively
multilingual NMT, use a dataset having 102 languages which is not publicly available. Zhang et al.
(2020) curate OPUS-100, a multilingual dataset of 100 languages sampled from OPUS, including
test sets; which are used in this work. Tiedemann (2020) have established a benchmark task
for 500 languages, including single directional baseline models. Wang et al. (2020) examine the
language-wise imbalance problem in multilingual datasets and propose a method to address the
imbalance using a scoring function.

7.6 MT Tools

SacreBleu (Post, 2018) simpli�es MT evaluation. MTData attempts to simplify training setup by
automating training and validation dataset retrieval. OPUSTools (Aulamo et al., 2020) is a similar
tool however, it interfaces with OPUS servers only. Since the dataset index for OPUSTools is on
a server, the addition of new datasets requires privileged access. In contrast, MTData is a client
side library, it can be easily forked and extended to include new datasets without needing special
privileges.

NLCodec: NLCodec is a Python library for vocabulary management. It overcomes the
multithreading bottleneck in Python by using PySpark. SentencePiece (Kudo and Richardson,
2018) and HuggingfaceTokenizers (Wolf et al., 2020) are the closest alternatives in terms of features,
however, modi�cation is relatively di�cult for Python users as these libraries are implemented in
C++ and Rust, respectively. In addition, SentencePiece uses a binary format for model persistence
in favor of e�ciency, which takes away the inspectability of the model state. Retaining the ability
to inspect models and modify core functionality is bene�cial for further improving encoding
schemes, e.g. subword regularization (Kudo, 2018), BPE dropout (Provilkov et al., 2020), and
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optimal stop condition for subword merges (Gowda and May, 2020). FastBPE is another e�cient
BPE tool written in C++.1 Subword-nmt (Sennrich et al., 2016b) is a Python implementation of
BPE, and stores the model in an inspectable plain text format, however, it is not readily scalable
to massive datasets such as the one used in this work. None of these tools have an equivalent to
NLDb’s mechanism for e�ciently storing and retrieving variable length sequences for distributed
training.

RTG: Tensor2Tensor (Vaswani et al., 2018) originally o�ered the Transformer (Vaswani et al.,
2017) implementation using TensorFlow (Abadi et al., 2015); our implementation uses PyTorch
(Paszke et al., 2019) following Annotated Transformer (Rush, 2018). OpenNMT currently o�ers
separate implementations for both PyTorch and TensorFlow backends (Klein et al., 2017, 2020).
As open-source toolkits evolve, many good features tend to propagate between them, leading to
varying degrees of similarities. Some available NMT toolkits are: Nematus (Sennrich et al., 2017),
xNMT (Neubig et al., 2018). Marian NMT (Junczys-Dowmunt et al., 2018), Joey NMT (Kreutzer
et al., 2019), Fairseq (Ott et al., 2019), and Sockey (Hieber et al., 2020). An exhaustive comparison
of these NMT toolkits is beyond the scope of our current work.

1https://github.com/glample/fastBPE
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Chapter 8

Discussion

8.1 Conclusion

We have made the following progress towards rare phenomena learning in machine translation:

• In chapter 3, we o�ered a high level architecture for NMT consisting of two ML components:
an autoregressor and a classi�er. We showed that MT models have much in common with
classi�cation models, especially class imbalance, which negatively a�ects NMT performance.
While it was known before that tuning the vocabulary size is important for achieving good
MT performance, the literature lacked a convincing and theoretically grounded explanation
for why only certain vocabulary size values are the best. We have o�ered an explanation as
well as a heuristic to automatically �nd near-optimal vocabulary size without needing an
expensive search. Upon a careful inspection of performance on each vocabulary type, we
have found that recall of types degrades as training examples become rarer.

• In chapter 4, we have found that existing evaluation metrics miss the complications of
unavoidable imbalance in test sets. The best practice for evaluating classi�cation models on
imbalanced test sets is to use macro-averaging, which treats each class equally instead of
each instance equally. By applying this best practice to MT evaluation, we achieved a metric
that has strong correlation with the semantic oriented downstream task of cross lingual
information retrieval. The macro-averaged metric also revealed discrepancies between
supervised and unsupervised NMT modeling, a property which other metrics are unable to
reveal.

• In chapter 5, we explored linguistic styles such as language alternations and partial transla-
tions, and found that multilingual models, as built currently, are not robust. We provided a
way to evaluate robustness by generating language alternations and partial translation test
cases. We also explored techniques to improve robustness and found sentence concatenation
and denoising to be useful. In addition, we found that models trained with augmented
training data result in less attention bleed, implying a better attention mechanism.

• In chapter 6, we presented three open-source tools for advancing machine translation
research and development: (1) MTData greatly simpli�es the process of retrieving datasets
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for a wide range of languages, (2) NLCodec simpli�es the way to preprocess, store, and
retrieve datasets for scalable NMT, and (3) RTG simpli�es training NMT models. Using
these tools, we demonstrated a multilingual NMT model that supports 600 languages to
English, thus enabling MT for 500 more rare languages which are not supported by others.
We show that by �ne-tuning the multilingual model on a limited quantity of training data,
the resulting model achieves state-of-the art results on rare languages.

8.2 Future Directions

As discussed in Chapter 1, categorical imbalance is ubiquitous in nature, and the rare phenomena
learning problem manifests in many domains and tasks. In this section, we envision and motivate
a few future research pathways.

The �rst direction is taking the lessons learned from MT task and directly applying them
to other natural language generation tasks. The inevitable type imbalance in natural language
datasets is likely a�ecting all ML based language generation models. Currently, text generation
models, such as image captioning, automatic speech recognition, and text summarization, are
evaluated using micro metrics, such as word error rate, METEOR (Banerjee and Lavie, 2005), and
ROUGE (Lin, 2004), etc. These micro metrics do not provide performance breakdown for each
type, so frequency-based modeling biases, especially the poor recall of rare types, may have been
unnoticed in the other text generation tasks. A future direction is to study evaluation metrics that
place more emphasis on rare words than the currently used micro metrics.

The second direction is exploration of other methods for rare phenomena learning in sequential
data. Byte pair encoding provides a unique opportunity to balance classes within natural language
sequences, and we have tuned its hyperparameter to reduce imbalance severity. Other such
opportunities may be available to deal with the curse of natural imbalances. For instance, in
masked language models (Devlin et al., 2019; Rogers et al., 2020), masking strategies aiming to
improve class balance may be e�ective. The label smoothing (Szegedy et al., 2016) technique
alters class distribution by moving a certain quantity of probability mass between classes; current
e�orts to reason about the e�ectiveness of the label smoothing (Müller et al., 2019; Gao et al.,
2020) lack investigation from the class balancing perspective. Adaptive label smoothing methods
(Wang et al., 2021) that aim to improve diversity by learning rare phenomena is another potential
pathway.

Third, rare phenomena learning is an important goal in other sequential or time series prob-
lems; e.g., whole-genome sequencing (Schubach et al., 2017), �nancial market events prediction
(Rechenthin, 2014), space weather forecasting (Ahmadzadeh et al., 2019), and atypical event de-
tection in wearable sensory data (Burghardt et al., 2021). Even though these problems appear to
be drastically di�erent from natural language sequences, the autoregressive sequence learning
and prediction models, and macro-vs-micro arguments about evaluation metrics described in this
thesis seem applicable. For time series with continuous output values, e.g., heart rate prediction,
evaluation metrics and loss functions that emphasize the errors made on extreme value readings
would be another pathways.
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Lastly, there are numerous hyperparameters in ML modeling: dropout rate, label smoothing
rate, batch size, learning rate, warm-up steps, etc. A question ML practitioners typically ask is,
‘what range of hyperparameter yield the optimal performance?’; they �nd its answer by searching
among a range of guesses, and choosing a value that yields the best performance on a validation
set. However, �nding an answer to ‘what range of values are good?’ does not necessary yield an
answer to ‘why are only certain point(s) on the number line best?’, or alternatively, ‘why do values
outside that range hurt the end performance?’. One such why question we asked in this thesis is
the question of vocabulary size hyperparameter. May we continue this spirit of �nding whys for
all other hyperparameters.
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