

The Inevitable Problem of Rare Phenomena Learning in Machine Translation

CUTE

LAB NAME

> Dissertation Defense by Thamme Gowda

> > March 28, 2022

Committee Jonathan May (advisor) Chris Mattmann Xuezhe Ma Aiichiro Nakano Shri Narayanan

Xiang Ren

Rare Phenomena Learning Problem

- Naturally occurring categorical observations are often imbalanced, some categories are frequent (majority classes), and others are rare (minority classes) E.g., cancer detection, fraud detection
- ML classification methods perform subpar on rare categories, but improved performance on rare categories is necessary in real world applications
- Rare phenomena in sequential data: genome, financial market events, space weather, sensor readings ... and natural language text!

Natural Languages have Imbalanced Types

- A few types are frequent (e.g., stopwords), and many others are rare
- Rare words carry more information content, so they can not be ignored
- Sequence-to-sequence learning is a general problem for sequences
 - Transformers^[1] were originally shown effective on seq-to-seq task (e.g., MT), but now used on all other taskon sequences
- Focus on machine translation (MT) for the rest of the talk

". The Long-tail Curse

Zipf's law says that most of the variance in language behavior can be captured by a small part of the system. ... Zipf's law, also says that most of the information about the language system as a whole is in the Long Tail.

... the machine learning techniques that we rely on are actually very bad at inducing systems for which the crucial information is in rare events. One day, either because of the demise of Moore's law, or simply because we have done all the easy stuff, the Long Tail will come back to haunt us." – Mark Steedman, 2008^[1]

[1] Mark Steedman. 2008. "Last Words: On Becoming a Discipline." CL, <u>https://aclanthology.org/J08–1008/</u>

Thesis Statement

- The need for improved performance on rare categories is ubiquitous across machine learning applications
- In machine translation (MT), this problem is inevitable and manifests in various forms:
 - 1. Rare words at training
 - 2. Rare words at evaluation
 - 3. Rare linguistic styles such as code-switching
 - 4. Rare languages
- By addressing these areas, we improve our ability to build higher quality, more comprehensive models

Overview

I – Rare words in training

"Finding the optimal vocabulary size for NMT" [EMNLP 2020 Findings]

II – Rare words in evaluation

"Macro-average: rare types are important too" [NAACL 2021]

III – Robustness – code-switching

"Improving robustness in MT via data Augmentation" [Under review]

IV – Rare languages (600+)

"Many-to-English MT tools, data, and pretrained models" [ACL 2021 Demos]

V – Discussion, Future Directions

Thanks

Co-Authors

- Jonathan May, USC ISI (+advisor+committee)
- Chris Mattamann, USC & JPL (+committee)
- Mozhdeh Gheini, USC ISI
- Zhao Zhang, UT & JPL
- Weiqiu You, U Penn
- Constantine Lignos, Brandeis University

Collaborators/Special Thanks

- Scott Miller, USC ISI
- Shantanu Agarwal, USC ISI
- Joel Barry, USC ISI
- Kenneth Heafield, U Edin

Committee

- Xuezhe Ma
- Shri Narayanan
- Aiichiro Nakano
- Xiang Ren

Acknowledgments

- USC Employee Benefits (Staff Tuition Assistance)
- DARPA LORELEI
- IARPA MATERIAL
- DARPA LwLL

Computing Resources

- USC Center for Advanced Research Computing (CARC)
- Texas Advanced Computing Center (TACC)

"Many-to-English MT tools, data, and pretrained models" [ACL 2021 Demos]

V – Discussion, Future Directions

Neural Machine Translation (NMT)

- Sequence transduction, f: $(x_1x_2x_3...x_m) \rightarrow (y_1y_2y_3...y_n)$
- Maximize $P(y_{1:m} | x_{1:m}) \Rightarrow Maximize \prod_{t=1}^{n} P(y_t | y_{<t}, x_{1:m}; \theta)$
- $y_{1:n} = \text{Decoder}(\text{Encoder}(x_{1:m}))$
 - Implementations: RNN (LSTM, GRU), CNN, Transformers
- Q: What is the impact of data imbalance?
- Byte-pair-encoding sub words [Sennrich et al 2016^[1]]
 - Addresses rare word (OOV) generation problem
- Subwords are obtained by merging most frequent chars and subwords
 - Better performance than chars, words
- Number of merges is a hyper parameter

Experiments

- Four target languages: DE→EN, EN→DE, EN→HI, and EN→LI
- Total of 11 dataset sizes: between 30K and 4.5M sentences
- × 10 vocabulary sizes: chars, 500, 1K, 2K, 4K, 8K, 16K, 32K, 48K, and 64K
- **Transformer** with 6 layers, 512 dims, 8 attn heads, 0.1 dropout, ... Trained as per the best practices for training transformers
- DE→EN shown; trend is similar on other language pairs

DE→EN NewsTest2019 BLEU vs Vocabulary Size

All BLEU lines are (sort of) concave down on vocabulary size; why?

NMT Abstraction

- $y_{1:n} = \text{Decoder}(\text{Encoder}(x_{1:m}))$
- Maximize $\prod_{t=1}^{n} P(y_t | y_{<t}, x_{1:m}; \theta)$
 - $\Rightarrow \text{ Maximize } \prod_{t=1}^{n} P(y_t \mid h_t; \theta) \text{ where } h_t = f(y_{< t}, x_{1:m}; \psi)$
- NMT = MulticlassClassifier + AutoRegressor

High-level abstraction of Transformer NMT

Imbalanced Classification

- Type to token distribution is skewed
- Classifiers are known to possess <u>frequency-based biases</u>. Minority classes are often ignored, i.e., poor recall
- Imbalanced classification learning:
 - Sampling methods: not feasible
 - Weighted cross entropy, focal loss, etc., did not improve performance
- Byte pair encoding (BPE): balances classes via splitting and merging

Effect of BPE

- As BPE merge operations increase
 Sentence length decreases
 - Class imbalance increases*
- We need both shorter sequences and smaller imbalance values ⇒
 - Left: balanced but long
 - Right: short but imbalanced
- Best vocabulary size is the one that achieves a good trade-off

Heuristic

"Use the largest possible BPE vocabulary such that at least 95% of classes have about 100 or more training examples"

Frequency-based Bias on Classes

- Pearson correlation coefficient
- Rank test set classes based on training frequency
- Correlation between Rank and <u>Precision</u>

Related: 'the the the the...' problem

• By tuning the vocabulary size, and there by tuning class balance, precision can be made uncorrelated with rank

Class Frequency Bias DE→EN NewsTest19

Frequency-based Bias on Classes

- Pearson correlation coefficient
- Rank test set classes based on training data frequency
- Correlation between
 Rank and <u>Recall</u>
- Rare classes have poor recall

Class Frequency Bias DE→EN NewsTest19

Part-I Conclusion

Related Work

- Others have focused on ways to search vocabulary size
 - we have given explanation for *why* some sizes are better than others
 - Useful heuristic
- No other work showing frequency-based biases in NMT

Summary

- Imbalance is unavoidable in natural language generation datasets
- We can split [or merge sub-]words, which is effective to handle imbalance
 - One of the reasons why bytepair-encoding/sub-words is very effective in NMT
- Rare types have lower recall than frequent types

Problem Statement

- Classifier evaluation on imbalanced datasets, two schools of thought:
 (1) Micro: treat each <u>instance</u> equally
 (2) Macro: Treat each <u>class</u> equally
- <u>Best practice</u>: if classes are imbalanced, and rare classes are important, use <u>Macro</u>
 - In NLP: type is class, token is instance; and rare types are important
- Q: What if we apply the best practices of classifier evaluation to MT evaluation?

Brown Corpus (Eng) ~1.2M tokens, ~48k types

Classifier Eval Metrics to MT

- Multi-class performance = average of individual class performances
 - Performance of a class, e.g., F-measure: $F_{\beta;c}$
- 1. Macro average: unweighted

 $MacroF_{\beta} = \frac{\sum_{c \in V} F_{\beta;c}}{|V|}$ i.e., equal importance to each <u>type</u>

2. Micro average: weighted e.g., frequency

 $\frac{\text{MicroF}_{\beta} = \frac{\sum_{c \in V} w_{c} \cdot F_{\beta;c}}{\sum_{c' \in V} w_{c'}}}{\sum_{c' \in V} w_{c'}}$ i.e., equal importance to each <u>token</u> NOTE: Micro-F1 \cong Accuracy

where weight for class, $W_c = \text{Refs}(c) + k$ for some $k \ge 1$

• We use k = 1; Note: if $k \to \infty$, $\operatorname{Micro} F_{\beta} \to \operatorname{Macro} F_{\beta}$

0 We use $\beta = 1$, and scale final scores to [0, 100], just like BLEU

MacroF1 vs Others

MacroF1 has equal weight for all types (*WMT 19 DE-EN NewsTest*) *Micro-averaged metrics overlook improvements from rare types, after rounding to one or two decimals*

Justification for MacroF1as an MT Eval Metric

- Compare MacroF1 with
 - BLEU, ChrF1, and MicroF1
 - BLEURT a model-based metric based on BERT
 - Model based models have undesirable biases
- Experiments:
 - Direct human assessment: 1. MT vs Human judgement score correlations on WMT Metrics tasks 2017-19
 - 2. Downstream CLIR Task metrics:

IR task with documents and queries in different languages

- MT vs IR score correlations: CLSSTS 2020: LT-EN, PS-EN, BG-EN
- Findings:
 - Direct evaluation: MacroF1 has upward trend over the years, and wins the highest number of times in 2019
 - Downstream task correlation on CLIR task: MacroF1 is consistently better on ۲ all three language pairs we have tested on

Reference: Hypothesis:	You must be a doctor. must be a doctor.			
	He	-0.735		
	Joe	-0.975		
	Sue	-1.043		
	She	-1.100		

Model based metrics (e.g., BLEURT) have undesirable biases

WMT Metrics Task: System level MT score vs human judgement correlation

Downstream CLIR Task: MT vs IR metrics correlation

Difference Between Supervised and Unsupervised NMT Performance (Collaboration with Weiqiu You)

SNMT vs UNMT: BLEU and MacroF1

MacroF1 Difference Between SNMT and UNMT

- UNMT has better performance on frequent types, but SNMT outperforms on rare types
 ⇒ Approximately same BLEU but a huge difference in MacroF1
- 2. Both MT have lower F1 score for content types than stopwords ⇒ long-tail curse
- Similar trend on EN-FR, EN-DE, DE-EN, EN-RO, RO-EN
- Other metrics do-not offer this level of breakdown. Try: BLEU, CHRF, BLEURT

*Only the top 500 types are visualized

Part-II: Conclusion

Related Work

- A lot of MT evaluation metrics... but missed type imbalance
 - Exception: NIST BLEU; but it makes much stronger assumptions about type importance
- Recent trend: model-based evaluation metrics. Undesirable biases and uninterpretable scores

Summary

- Rare types are important too
- Macro F1 for MT evaluation
 - Competitive on direct human assessment (when all systems are fluent)
 - Outperforms others on downstream CLIR task
- Disagreement between BLEU (a micro metric) and MacroF1 can be clearly seen on supervised vs unsupervised NMT

I −Ra	re words in training	CE MOMENT WHEN YOU START PENSER EN DEUX LANGUES			
"Finding the optimal vocabulary size for NMT" [EMNLP 202(
✓ II – R	are words in evaluation				
"Macro	III – Rare linguistic styles				
\Rightarrow III –	Improving Multilingual MT Robustness				
"Impre	via Data Augmentation	view]			
IV – "Many-to	(Under Review Thamme Gowda, Mozhdeh Gheini, and Jonathan May -English MT tools, data, and pretrained models'' [ACL 2021	7) Demos]			
V – Dis	scussion, Future Directions				

Problem Statement

- Sometimes,
 - Multilingual speakers switch between languages
 - Part of text is already in target language
- Code switching or language alternation
- Are the current multilingual NMT models robust? No

Original bandaaginda bari bageeche ke bahar-e iddivi. kahaani ke andhar (Kan+Hin) bandu bidona. kaam bolo, saab.

English From the time I've reached, we've stayed outside the topic. Let's Translation get into the story. Tell me the work, sir.

Code-switching example: Kannada+Hindi

Image Credit: Amazon US/Funny Quotes Mugs

Robustness Checks

- Behavior testing for NLP in general (Ribeiro et al 2020^[1])
 - Simple modifications of test sets: negation, synonym, NER replacement, etc.
 - Tasks: sentiment analysis, duplicate question detection, span detection
 - Idea of behavior testing for MT is interesting; lets apply it in multilingual translation settings
- Create more tests by concatenating test sentences
 - C-SL: consecutive same language → missed sentence segmentation
 - C-TL: consecutive target language
 > partial translation
 - **C-XL**: consecutive **cross**-language → Code switching (inter-sentence)
 - **R-XL**: random cross-language → Code switching + random topic switching

Experiment Setup

- Workshop on Asian Translation 2021 MultiIndic Task
 - 10 Indian languages → English
 - Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, and Telugu
- Robustness checking evaluation sets are created as per previous slide
- Training data augmentations:
 - 1. CatRepeat: concatenate
 - 2. CatSL: concatenate random sentence in same language
 - 3. CatXL: concatenate random sentence across languages
 - 4. NoisySource: noise(source) \rightarrow target
 - 5. DenoiseTarget: noise(target) \rightarrow target
- Noise: 10% of random word drop, random replacements, and random word order shuffle

Results: BLEU

Qualitative Examples

Source	আগামী ২০২২ সালের মধ্যে এই কাজ সম্পূর্ণ করার লঙ্খ্যমাত্রা স্থির হয়েছে। પ્રધાનમંત્રીએ જણાવ્યું કે સરકાર સ્પષ્ટ લક્ષ્યો અને સમયસૂચકતા સાથે અનેક યોજનાઓ પર કામ કરી રહી છે.
Reference	He said the aim is to complete this task by 2022. The Prime Minister said that the Government is working on various schemes with clear targets and timelines.
Baseline	He said the Government is working on several schemes with clear objectives and timelines.
B+CatRepeat	The target is to be completed by 2022, the Prime Minister said that the Government is working on several schemes with clear targets and timelines. is the of
B+CatXL	The target is to complete it by 2022. The Prime Minister said that the Government is working on a number of schemes with clear targets and timelines.
B+CatSL	We have set a target to complete this task by 2022. The Prime Minister said that the Government is working on a number of schemes with clear objectives and timelines.
B+NoisySrc	The Prime Minister said that the Government is working on several schemes with clear objectives and timelines.
B+DenoiseTgt	He said the Government is working on several schemes with clear objectives and timelines.
B+CatXL +DenoiseTgt	We have set a target of completing it by 2022. The Prime Minister said that the Government is working on a number of schemes with clear targets and timelines.

Example translations for a C-XL check (Source: Bengali + Gujarati)

Attention Visualization

Models trained with augmented data learns robust cross-attention mechanism

Part-III Conclusion

Related Works

- Back translation: Costly in massively multilingual setup
- Most other robustness works are concerned about bilingual MT, and noisy data, where as our work is about code-switching cases

Summary

- Current multilingual MT models are not robust to language switching
- We proposed easy to use robustness checks
- Some training augmentation methods improve robustness
- Models trained with sentence concatenation and denoising achieve
 - Best scores on robustness tests
 - Learn better attention mechanisms

Problem Statement

- There are 7,000+ known living languages^[1]
- Only about 100 languages are supported by popular MT Google^[2]: 108 Microsoft^[3]: 103
- Research MT efforts are also focused on the top 100 languages
- There are no MT models for thousands of languages
- Q: Can we build MT models for rare languages ?

Population	Number of Languages		Number of speakers			
Range	Count	Percent	Cum%	Total	Percent	Cum%
100M - 1B	8	0.1	0.1%	2.8B	40.46	40.46%
10M - 100M	86	1.2	1.3%	2.8B	40.00	80.47%
1M - 10M	313	4.4	5.7%	1B	14.09	94.56%
100k - 1M	977	13.7	19.5%	310M	4.44	99.00%
10k - 100k	1,812	25.5	44.9%	62M	0.89	99.89%
1k - 10k	1,966	27.6	72.6%	7.5M	0.107	99.99%
100 - 1k	1,042	14.7	87.2%	0.5M	0.007	
10 - 100	305	4.3	91.5%	12k	0.0002	100%
1 - 9	114	1.6	93.1%	465	0.00001	100%
0	314	4.4	97.6%	0	0	
Unknown	174	2.4	100%			
Total	7,111			7 B		

[1] Eberhard, David M., Gary F. Simons, and Charles D. Fennig (eds.). 2019. Ethnologue: Languages of the World. Twenty-second edition. Dallas, Texas: SIL International. Online version: http://www.ethnologue.com/statistics/size [2] https://web.archive.org/web/20190401105648/https://www.ethnologue.com/statistics/size [2] https://www.ethnologue.com/statistics/size [2] https://www.ethnologue.com/statistics/size [2] https://www.ethnologue.com/statistics/size [2] https://www.ethnologue.com/statistics/size [2] https://blog.google/products/translate/five-new-languages/ [3] https://www.microsoft.com/en-us/research/blog/microsoft-translating-100-languages-and-counting/
Requirements for Supporting Rare Languages

- Scalable, label-efficient NMT modeling
 - Thanks, Vaswani et al 2017 !
 - Scaled to 100 of languages
 - Efficient in low resource ⇒
- 2. Faster hardware
 - Thanks, Nvidia!
- 3. Datasets
 - (missing)
- Some quantity of parallel datasets exist for ~600 languages
- We need tools to put all these together, train models, and make them accessible

In low resource settings, Transformers are more efficient than prior models (simulated on the left side). This opens up

Tools for Scalable NMT

- 1. MTData: parallel dataset catalog and downloader
 - Publicly listed datasets: OPUS, Statmt.org, Paracrawl, ...
 - 131k datasets and counting, for hundreds of languages ^[1]
 - <u>https://github.com/thammegowda/mtdata/</u>
- 2. NLCodec: Vocabulary manager; and database layer
 - PySpark backend for large datasets
 - NLDb: Efficient storage and retrieval layer; parallelizable
 - <u>https://isi-nlp.github.io/nlcodec/</u>
- 3. Reader Translator Generator (RTG): NMT toolkit based on PyTorch
 - Reproducible experiments; one **conf.yml** per experiment
 - All the necessary ingredients for NMT research to production
 - <u>https://isi-nlp.github.io/rtg/</u>
- pip install mtdata nlcodec rtg

More NLP tools under my PyPI a/c <u>https://pypi.org/user/Thamme.Gowda/</u>

[1] As of 2022/03; earlier we had 91k more from JW300, but they are taken down due to licensing issues

Datasets for 500+ Languages

- MTData has an index of parallel datasets
- Where are the datasets? ⇒
- Datasets comes in different formats. Standardization of language names, IDs etc
 - ISO 639-3 ISO 639-1
 - BCP 47
- BixTex citation entries (whenever available)
- **Recipe**: a set of datasets nominated for train/dev/test
 - Intended to improve reproducibility

Thanks to Kenneth Heafield (U Edinburgh) for their contributions

New: WMT 2022 recipes https://www.statmt.org/wmt22/mtdata/

Many \rightarrow English Translation

- Using mtdata download datasets, followed by deduplication, cleaning, excluding sentences from known test sets, ...
- V1: 500-to-English

```
[Fall 2020 – Spring 2021]
```

[Spring 2022]

- Dataset: 500+ languages: ~474M sentence pairs; 9B toks on each side
- Model: Transformer: 768d, 9 encoder and 6 decoder layers
 - 512k source and 64k target embeddings
 - 539M params; \sim 73% in source embedding, 21% in target embedding
- V2: 600-to-English
 - Dataset: 600+ languages: 2.3B sentence pairs; ~37B toks on each side
 - Model: same as V1; except, 1024 dims
- V2.1 : V2 model finetuned on code switching augmentation corpus
 - At most 200k random sentences are selected per language
 - Augmentation methods: (1) Random sent concatenation, (2) Denoise target

http://rtg.isi.edu/many-eng/data-v2.html

V2 Dataset Statistics: [301-600]

42

V1 Model's BLEU on OPUS-100 Test Set

Results: All many-English models

v2 model is better on single sentence translation; v2.1 model is better on robustness checks

An End-to-end MT System

- Demo: <u>http://rtg.isi.edu/many-eng/</u>
 - Models: <u>rtg.isi.edu/many-eng/models/</u>
- Docker images
- \$ IMG=tgowda/rtg-model:500toEng-v1
- \$ IMG=tgowda/rtg-model:600toEng-v2.0
- \$ docker run -p 6060:6060 \$IMG

```
# For GPU backend, --gpus '"device=0'"
```

conf.vml About Reader Translator Generator Buenos días Good morning Günaydın Good morning Good morning. صيح بخير ಶುಭ ಮು೧ಜಾನೆ Good morning 좋은 아침 Good morning Καλημέρα Good morning 早上好 Morning. guten Morgen Good morning おはようございます Good morning காலை வணக்கம் Morning శుబోదయం Good morning शभ प्रभात good morning Good morning සුහ උදෑසතක් Доброе утро Good morning Translate-Copy to Clipboard

RTG Web Interface: REST API behind the scenes (via AJAX)

See also,

Apache Tika integration: https://cwiki.apache.org/confluence/display/TIKA/NMT-RTG Spanish translation: https://www.ibidemgroup.com/edu/traduccion-machine-translation-datos-modelos/

Finetuning: BLEU on IARPA MATERIAL Datasets (Analysis)

"Previous best" : the best bilingual models used in IARPA MATERIAL evaluations; separate model for each language

Part-IV Conclusion

Related Work

- Google: 108, Microsoft: 103 They support many-to-many
- OPUS 100, Facebook AI Research : 100 langs Many-to-Eng and Eng-to-Many
- Tatoeba Challenge
 ~500 languages dataset from
 OPUS; Mostly bilingual
 models

Summary

- Tools: RTG, NLCodec, MTData
- Standardization of datasets, IDs
- First ever 500-English multilingual model
- Translation service: available for free via docker
- State-of-the-art performance on low resource languages, via finetuning on a limited quantity of data

Implications

	Before	After	
NMT Architecture	Autoencoder: i.e., Encoder-Decoder	Autoregressor + Classifier ^[1] ; more emphasis on the target vocabulary and data imbalance	
Vocabulary Size	Did not know why some are best; Arbitrarily chosen or via grid search for each dataset	Heuristic to auto adjust vocab size! Byte pair-encoding (BPE) size is chosen to minimize sequence lengths and improve class balance ^[1]	
Evaluation Metrics	Treat each 'token' equally; Stopwords have more weight	Treat each 'type' equally ^[2] ; All types have equal weight. Address data imbalance at evaluation	
Scaling NMT	To ~100 languages	To ~600 languages ^[3] Bunch of useful tools, datasets; Standardization of dataset IDs	
Multi-lingual lang. switching	Not robust	Robust to language switching ^[4] Can translate text that start in one language and finishes in another. Robustness to partly translated text	

[1] Gowda and May, *Finding the optimal vocabulary size for NMT'*, EMNLP 2020 Findings
[2] Gowda et al, *Macro-average: Rare types are important too*', NAACL 2021
[3] Gowda et al, *Many-to-English tools, data, and pretrained models'*, ACL 2021 Demos
[4] Gowda et al, *Improving multilingual MT robustness via data augmentation*, [under review]

These	projects	helped	in s	haping	some	of	the
ideas a	ind skill.	s for Pl	bD i	work!			

Works Outside MT [After Joining MS @ USC]

Mehrabi, N., **Gowda, T.**, Morstatter, F., Peng, N., & Galstyan, A. (2020, July). Man is to person as woman is to location: Measuring gender bias in named entity recognition. In Proceedings of the 31st ACM Conference on Hypertext and Social Media (pp. 231-232).

IE / NER

Classification

Pan, X., **Gowda, T.**, Ji, H., <u>May, J.,</u> & Miller, S. (2019, November). Cross-lingual joint entity and word embedding to improve entity linking and parallel sentence mining. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019) (pp. 56-66).

Wagstaff, K., Francis, R., **Gowda, T.,** Lu, Y., Riloff, E., Singh, K., & Lanza, N. (2018, April). Mars Target Encyclopedia: Rock and Soil Composition Extracted from the Literature. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1).

Gowda, T., Hundman, K., & <u>Mattmann, C. A</u>. (2017, June). An approach for automatic and <u>large-scale image</u> forensics. In Proceedings of the 2nd International Workshop on Multimedia Forensics and Security.

Wagstaff, K. L., Lu, Y., Stanboli, A., Grimes, K., **Gowda, T.**, & Padams, J. (2018, April). Deep Mars: CNN classification of mars imagery for the PDS imaging atlas. In Thirty-Second AAAI Conference on Artificial Intelligence.

Hundman, K., Gowda, T., Kejriwal, M., & Boecking, B. (2018, December). Always lurking: understanding and mitigating bias in online human trafficking detection. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (pp. 137-143).

Web Data Mining **Gowda, T.,** & <u>Mattmann, C. A</u>. (2016, July). Clustering web pages based on structure and style similarity (application paper). In 2016 IEEE 17th International conference on information reuse and integration (IRI) (pp. 175-180). IEEE.

Mattmann, C. A., Yang, G. H., Manjunatha H., **Gowda, T.,** Zhou, A. J., Luo, J., & McGibbney, L. J. (2016). Multimedia metadata-based forensics in human trafficking web data. The SEXI workshop on the 9th ACM conference on Web Search and Data Mining (WSDM 2016). ACM

Bias in ML models

Rare phenomena learning

Future Directions

- Other seq-to-seq tasks with natural languages
 - Speech recognition, summarization, captioning, dialogue generation... rare words are important too. But these models are evaluated using <u>micro metrics</u>.
 - Dialogue generation may yield more diverse responses if long tail is emphasized
- Other ways to mitigate data imbalance severity
 - Masked language models (e.g., BERT): masking strategies that consider data imbalance into account
 - Label smoothing (LS) is effective in practice. Since LS alters class distribution, it maybe possible to of this method to improve class balance
 - Weighted loss functions: focal loss, dice loss etc., for sequence-to-sequence
 - Maximum Entropy Principle: Training with the uniform/balanced distribution: "*Prepare for the worst*", Evaluation on Zipfian/skewed dataset: *"Hope for the best"*
- Other sequential data: genome sequences, stock market events, space and earth weather forecasting, rare events in sensor readings, etc.,

CUTELABNAME

The Inevitable Problem of Rare Phenomena Learning in Machine Translation

Dissertation Defense by Thamme Gowda

Committee

Jonathan May (advisor) Chris Mattmann Xuezhe Ma Aiichiro Nakano Shri Narayanan Xiang Ren

Thanks

Co-Authors

- Jonathan May, USC ISI (+advisor+committee)
- Chris Mattamann, USC & JPL (+committee)
- Mozhdeh Gheini, USC ISI
- Zhao Zhang, UT & JPL
- Weiqiu You, U Penn
- Constantine Lignos, Brandeis University

Collaborators/Special Thanks

- Scott Miller, USC ISI
- Shantanu Agarwal, USC ISI
- Joel Barry, USC ISI

Committee Members

- Xuezhe Ma
- Shri Narayanan
- Aiichiro Nakano
- Xiang Ren

Acknowledgments

- USC Employee Benefits (Staff Tuition Assistance)
- DARPA LORELEI
- IARPA MATERIAL
- DARPA LwLL

Computing Resources

- USC Center for Advanced Research Computing (CARC)
- Texas Advanced Computing Center (TACC)

PS. The Other Curse

"The more of the local stuff we get right, the more users will come to trust the software, and hence the more noticeable long-range dependencies will become, and the more upset people will get if they are deceived by a wrong analysis" – Mark Steedman, 2008

As erroneous predictions become rare, the cost of each error (e.g., how much it will upset users) grows exponentially high

END

Neural Machine Translation

- $\blacktriangleright \text{ NMT, } f: (x_1 x_2 x_3 \dots x_m) \rightarrow (y_1 y_2 y_3 \dots y_n)$
- $y_{1:n} = Decoder(Encoder(x_{1:m}))$
- Maximize $P(y_{1:m} | x_{1:m}) \Rightarrow Maximize \prod_{t=1}^{n} P(y_t | y_{<t}, x_{1:m}; \theta)$

Why are all BLEU lines (sort of) concave down on vocabulary size?

Part-I Rare Words in Training

Finding the Optimal Vocabulary Size for NMT EMNLP Findings 2020

Thamme Gowda and Jonathan May

https://aclanthology.org/2020.findings-emnlp.352/

TG's Dissertation Proposal

Part-II Rare Words at Evaluation

All words are important, but some words are more important than others.

Macro-Average: Rare Types are Important Too NAACL 2021

Thamme Gowda, Weiqiu You, Constantine Lignos, and Jonathan May

https://aclanthology.org/2021.naacl-main.90/

Part-III Robustness to Language Switching

Improving Multilingual Machine Translation Robustness to Code-Switching via Data Augmentation

(Under review) Thamme Gowda, Mozhdeh Gheini, and Jonathan May.

Part-IV Rare Languages

Translate all languages

Many-to-English Machine Translation Tools, Data, and Pretrained Models ACL 2021 Demos

Thamme Gowda, Zhao Zhang, Chris Mattmann, and Jonathan May

https://aclanthology.org/2021.acl-demo.37/

Implications: A Look Ahead

	Before/Now	After/End of the Presentation
NMT	NMT is generation	NMT is classification ^[1]
Vocabulary Size	Arbitrary hyperparameter	Well reasoned parameter; chosen using a heuristic ^[1]
Evaluation	Treat each 'token/instance' equally	Important tokens are treated more important ^[2]
Scaling NMT	To ~100 languages	To \sim 500 languages; Bunch of useful tools ^[3]
Multilingual NMT robustness	Not robust	Robust to language switching ^[4]

[1] Gowda and May, *Finding the optimal vocabulary size for NMT'*, EMNLP 2020 Findings
[2] Gowda et al, *Macro-average: Rare types are important too*', NAACL 2021
[3] Gowda et al, *Many-to-English tools, data, and pretrained models'*, ACL 2021 Demos
[4] Gowda et al, *Improving multilingual MT robustness via data augmentation*, [under review]

Current/WIP Research

- [WIP] Combine Part-III and Part-IV:
 - Robustness across 500+ multilingual NMT In part-III, we used dataset from WAT21 shared task
- *[WIP]* Part-III revised:
 - +100 more languages (Up to 600 languages)
 - More datasets have been found on web and included in mtdata

Next Steps in Ph.D.

Dataset Standardization

- Standard way to reference/identify languages
 - ISO 639-1: two letter code e.g., en, de, hi, zh, .. 184 codes
 - ISO 639-3: three letter code e.g., eng, deu, hin, zho, ... 7,867 codes
- BCP 47: Language [Script] [Region] aka. IETF language tag ^[1]
 - Language: ISO 639-1 (for backward compatibility) and ISO 639-3 (for low resource)
 - Script: ISO 15924; optional, suppressed if default e.g, Latn, Cyrl ...
 - Region: ISO 3166-1; optional, e.g, US, GB, IN, CA, ...
- Mtdata uses BCP47 like ID, but ISO 639-3 for all languages
 - eng_Latn_US → eng_US
 - mon_Cyrl_MN
 - kan_Knda → kan ; kan_Latn → kan_Latn
- Dataset ID: <Group>-<name>-<version>-<lang1>-<lang2>
 - Paracrawl-paracrawl-8-deu-eng
 - OPUS-paracrawl-7.1-deu-eng

[1] <u>https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry</u> Thanks to Kenneth Heafield for guidance on this topic

DE→EN NewsTest2019 BLEU vs Vocabulary Size

TG's Dissertation Proposal

TG's Dissertation Proposal

BLEU vs Vocabulary Size EN→HI IITB Test and EN→LT NewsTest2019 → 0.5M EN-HI → 1.3M EN-HI → 0.6M EN-LT

TG's Dissertation Proposal

Transformer Ablation

<u>Hypothesis</u>: Encoder is *not* a must have, but rather a good to have component Varying number of layers; $DE \rightarrow EN$ (shared vocab) and $EN \rightarrow HI$ (separate vocab)

Most people do not listen with the intent to understand; they listen with the intent to reply. - Stephen Covey, 2004

https://github.com/thammegowda/015-nmt-ablation

Imbalanced Classification Learning Methods

• Sampling methods:

(1) Up-sampling / over-sampling(2) Down-sampling / under-sampling,(3) Synthetic Minority Over-sampling (SMOTE)

- Not straight forward in MT; word types are imbalanced, but sentences are to be sampled
- Weighted loss functions:
 - Weighted cross entropy
 - Focal-loss
 - Effective number of samples

Adaptive learning methods, e.g., ADAM, and label smoothing achieve a similar effect

• Byte Pair Encoding (BPE)

Balancing classes via splitting and merging in a sequence

ightarrow Tuning the vocabulary size improves class balance \swarrow

Classifier (C)

- BPE merge ops modify class distribution
- Goal: balanced class distribution during training (Maximum entropy principle)
- Balance = Uniform distribution
- Imbalance = Divergence from balance
- 1. Using simplified Earth Mover Distance
 - $D = \frac{1}{2} \sum_{i=1}^{K} |p_i \frac{1}{K}|$

 $0 \le D \le 1$ for a distribution of K classes

- 2. Sufficient training examples, $F_{95\%}$
 - + $F_{95\%}$ defined as least frequency in the 95th % of most frequent classes
 - Least frequent 5% classes excluded as noise

AutoRegressor (R)

- BPE merge ops vary sequence length
- Autoregressor's predictions are based on its past prediction(s)
 - As well as Classifier's predictions
- Shorter sequences are easy, longer sequences are hard
 - Both C and R are approximations, having non-zero probability of errors; errors compound on long seqs
- Mean sequence length $\mu = \frac{1}{N} \sum_{i=1}^{N} |y^{(i)}|$ where $y^{(i)}$ is a target sequence in a parallel corpus of N sequences
Frequency-based Bias on Class Performance

- \mathcal{R} : Ranking of test set classes based on *training set frequency*
 - Classes are BPE sub-words
- Pearson Correlation Coefficient
- 1. Rank vs Precision ($\rho_{\mathcal{R},P}$)
 - $\rho_{\mathcal{R},P}$ is positive at high D

⇒ Frequent classes have relatively poor precision

- 2. Rank vs Recall $(\rho_{\mathcal{R},R})$
 - $\rho_{\mathcal{R},R}$ is negative at high D

 \Rightarrow Rare classes have poor recall

• Takeaway: precision is improved with lower D, but recall of rare classes is still problematic

TG's Dissertation Proposal

Review of MT Metrics

• [Papineni et al. 2002^[1]] BLEU = $[\prod_{n=1}^{4} P_n]^{\frac{1}{4}} BP$

 P_n is n-gram precision of tokens. BP is brevity penalty BP = min $\left(1, \exp\left(1 - \frac{r}{c}\right)\right)$

- [Popović, 2015^[2]] $ChrF_{\beta} = (1 + \beta^2) \frac{ChrP \times ChrR}{\beta^2 \times ChrP + ChrR}$ Character n-grams for up to 6-grams
- [Sellam et al. 2020^[3]] BLEURT BERT, a transformer language model finetuned to predict human judgements scores on WMT

Reference :	You must be a doctor.		
Hypothesis:	must be a doctor.		
	He	-0.735	
	Joe	-0.975	
	Sue	-1.043	
	She	-1.100	

Model based metrics (e.g., BLUERT) have unwanted biases

[1] <u>https://aclanthology.org/P02-1040/</u> [2] <u>https://aclanthology.org/W15-3049/</u> [3] <u>https://aclanthology.org/2020.acl-main.704/</u>

Motivation / Problem

- Natural language datasets have imbalanced word types
 - Rare types have more information content
- Classification evaluation metrics
 - Micro: treat each instance equally
 - Macro: treat each class equally
 - Use macro metrics on imbalanced sets
- Micro metrics on imbalanced sets give a false sense of model performance
 - E.g., cancer detection with 1:99 imbalance; majority label classifier gets 99% overall accuracy, but that's not a useful metric
 - NLP is similar

WMT Metrics: Wins per Metric

- Wins = Number of times a metric scored highest correlation with human judgements
- *BLEU is from the WMT metrics package, precomputed by task organizers
- MacroF1 and MicroF1 use the same tokenizer as BLEU, obtained using SacreBLEU

MacroF1 has more wins in the recent year -- when systems are mostly fluent, adequacy is a key discriminator

CLIR Task: Pipeline

CLSSTS 2020 / IARPA MATERIAL

IR task with queries and docs in different languages

- Build a set of MT models; translate all source documents to the target language, compute MT metric(s)
- 2. For each MT model's translations, build an IR model, and measure IR metrics
- 3. Find the correlation between the set of MT scores and IR scores. The MT metric having stronger correlation with IR metric(s) is more useful than others.
- 4. Repeat this on many languages: LT-EN, PS-EN, BG-EN

Downstream CLIR Task

- IR task with queries and docs in different languages
- Translate source docs to target language, and match queries with docs
- MT metric having strong correlation with IR metric (e.g., mAP) is more useful

MacroF1 is the strongest indicator of downstream IR task performance

MacroF1 Difference Between SNMT and UNMT

Similar trend across all languages: SNMT is better than UNMT on rare words

*Only the top 500 types are visualized

Results: BLEU

Improvements are not visible on the original (Avg) set, but proposed checklist sets showcase it

Attention Bleed

- Cross-attention mass crossing sentence boundaries in concatenated test sentences
 - Lower is better
- Average *attention bleed* across
 - All sentences
 - Transformer layers
 - Attention heads
- Models trained on augmented sentences achieve lower bleed
 Learn better attention

Attention bleed in models trained on all-data

V1 Dataset Sizes: 500 Languages

* ISO 639-3 codes

V2 Dataset Stats: 600 Languages

* ISO 639-3 codes

WebNLG Data-to-Text Evaluation

Correlation with Fluency, Grammar, and Semantics on English only

but one of the strong indicators of Semantics

Transfer Learning: Fine Tuning

- E.g., two low-resource languages BRE: 1.2M ENG toks SME: 100K ENG toks
- Huge improvements in BLEU!

Model	BRE-ENG	SME-ENG
Baseline	12.7	10.7
500-eng parent	11.8	8.6
Finetuned	22.8	19.1

Finetuning: MacroF1 on IARPA MATERIAL Datasets (Analysis)

"Previous best" : the best bilingual models used in IARPA MATERIAL evaluations; separate model for each language

MacroF1 for ASR Evaluation

- Which ASR metric is the best indicator of downstream CLIR task performance?
 - Word error rate (WER)
 - Match error rare (MER)
 - Word information preserved (WIP)
- Other metrics: BLEU, MicroF1, MacroF1
- Correlation between ASR metrics and AQWV
 - Using Kendall's rank coefficient, au
- → MacroF1 is a strong indicator, on Pashto (2C) (with over 99% confidence)

Classifier Evaluation

- Test set, $T = \{ (h^{(i)}, y^{(i)}) \mid i = 1, 2, 3, ..., m \}$ of (hypothesis, reference)
- Classes are the word types, after tokenization
 - We use the same tokenizer as BLEU, as implemented in SacreBLEU
- C(c, a) counts the number of tokens of type c in sequence a
- Preds(c) = $\sum_{i=1}^{m} C(c, h^{(i)})$; Refs(c) = $\sum_{i=1}^{m} C(c, y^{(i)})$
- $Match(c) = \sum_{i=1}^{m} \min\{C(c, h^{(i)}), C(c, y^{(i)})\}$ [BLEU, Papineni et al 2002]
- Precision, $P_c = \frac{Match(c)}{Preds(c)}$; Recall, $R_c = \frac{Match(c)}{Refs(c)}$
- F-measure per class c: $F_{\beta;c} = (1 + \beta)^2 \frac{P_c \times R_c}{\beta^2 \times P_c + R_c}$